

www.QU4LITY-project.eu

Co-funded by the Horizon 2020 Programme
of the European Union

DIGITAL MANUFACTURING PLATFORMS FOR
CONNECTED SMART FACTORIES

D3.12 Permissioned Blockchain for ZDM

Deliverable Id : QU4LITY-D3.12

Deliverable Name : Permissioned Blockchain for

ZDM

Status : Final

Dissemination Level : PU

Due date of deliverable

:

31/03/2021

Actual submission date

:

08/06/2021

Work Package : WP3

Organization name of

lead contractor for this

deliverable :

Engineering Ingegneria

Informatica S.p.A. (ENG)

Author(s): Mauro Isaja (ENG)

Reviewer(s): Marcel van der Kraan (TNO)

Partner(s)

contributing :

ENG, ATOS, FHG, AIT

Abstract: This deliverable is devoted to the presentation of

blockchain-based digital enablers, also known as Distributed

Applications (DApp in brief), that implement the secure data

sharing and state synchronization across multiple systems in

the manufacturing value chain.

Ref. Ares(2021)3759247 - 08/06/2021

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 2 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Contents

List of figures .. 3

List of Abbreviations .. 4

HISTORY .. 5

Executive Summary ... 6

1 Introduction .. 7

2 DLT for QU4LITY ... 9

2.1 Context .. 9

2.2 Potential use cases ... 10

2.2.1 Supply chain tracing .. 10

2.2.2 Equipment identity management .. 10

2.2.3 Smart machine’s diagnostics and pay-per-use 10

2.2.4 Monitoring conformity to SLAs, standards and regulation 11

2.2.5 Circular economy .. 11

3 QU4LITY’s DLT infrastructure ... 12

4 QU4LITY’s DLT digital enablers ... 13

4.1 General view of Decentralized Applications in QU4LITY 13

4.2 QU4LITY’s Decentralized Application catalogue 14

4.2.1 Quality Clearing House DApp .. 15

4.2.2 Secure Message Board DApp .. 19

4.2.3 Secure Identity Directory DApp .. 24

5 Conclusion ... 32

References... 33

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 3 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

List of figures
Figure 1 - QU4LITY’s Reference Architecture ... 9

Figure 2 - DApp structure .. 13

Figure 3 – QCH DApp: ledger records and process roles 16

Figure 4 - QCH API documentation.. 18

Figure 5 – SMB DApp: data model .. 20

Figure 6 - SMB DApp: ledger records and process roles 21

Figure 7 - SID DApp: data model .. 25

Figure 8 - Deployment of a SID system ... 27

Figure 9 - SID REST API: detail of the POST method for registering a new identity28

Figure 10 - SID REST API: detail of the GET method for retrieving one specific identity

 .. 29

Figure 11 - SID REST API: detail of the PUT method for setting the status of an

identity ... 30

Figure 12 - SID REST API: detail of the PUT method for setting the “ext” field of an

identity ... 30

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 4 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

List of Abbreviations

Abbreviation Explanation

API Application Programming Interface

B2B Business-to-business

CA Certificate Authority

ERP Enterprise Resource Planning

DApp Decentralized Application

DID Decentralized Identifier

DLT Distributed Ledger Technology

HLF Hyperledger Fabric

HTTP HyperText Transfer Protocol

IIoT Industrial Internet-of-Things

MSP Membership Service Provider

OEM Original Equipment Manufacturer

PL Private Ledger

QADM Quality Assessment Data Model

QAR Quality Assessment Report

QCH Quality Clearing House

RA Reference architecture

REST Representational State Transfer

RWE Real World Entity

SID Secure Identity Directory

SMB Secure Messaging Board

SSI Self-sovereign identity

SUM Shipping Unit Manifest

VCL Value Chain Ledger

WP Work package

ZDM Zero Defect Manufacturing

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 5 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

HISTORY

Version Date Modification reason Modified by

0.1 26/03/2021 First draft: structure Mauro Isaja

0.2 02/04/2021 Sections 2 & 3: recap of D3.11 Mauro Isaja

0.3 22/04/2021 Section 4: DApp documentation Mauro Isaja

0.9 06/05/2021 First version ready for review Mauro Isaja

1.0 19/05/2021 Final version after review Mauro Isaja

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 6 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Executive Summary
Deliverable D3.12 “Permissioned Blockchain for ZDM – final version” reports on the

work performed and the final results of Task 3.6 “Blockchains for Secure

Decentralized State Management”. The objective of Task 3.6 is the development of a

Distributed Ledger Technology (DLT) infrastructure that will enable secure state

sharing and synchronization of distributed industrial processes related to AQ/ZDM.

Most importantly, such infrastructure will support the traceability of data and ensure

its integrity, thus significantly improving trust in decentralized processes. This double

role of the infrastructure will be possible thanks to the capability of the underlying

blockchain platform to keep confidential data secure within separate environments,

enforcing specific access policies.

This document is a major update over the previously released D3.11 report. While

the initial version was focused on more general topics like the inner workings of

Blockchains and Smart Contracts, the selection of Hyperledger Fabric as the baseline

DLT platform for QU4LITY and the project’s approach to development and

deployment of the infrastructure, the main part of this current version is a detailed

description of the actual Distributed Applications (DApps) released. These are the

following:

• Quality Clearing House (QCH). QCH enables a decentralized workflow that

targets a typical Quality Management / ZDM process in a non-hierarchical

supply chain scenario.

• Secure Message Board (SMB). SMB enables the publishing of sensitive

content (e.g., software, firmware, algorithms, parameters, data, documents)

to subscriber channels, with the added value of strong guarantees on

provenance, integrity and confidentiality.

• Secure Identity Directory (SID). SID enables the decentralized

management of digital identities and authentication credentials for both

human and machine actors. SID is also used by both QCH and SMB as their

identity management infrastructure.

All the above mentioned DApps are now available on QU4LITY’s Value Chain Ledger

(i.e., the Hyperledger Fabric permissioned Blockchain network specifically created for

QU4LITY and hosted by ENG on a Cloud facility): any user application that has been

properly integrated and configured can access their functionality by connecting

through the public Internet. Moreover, the source code of all DApps has been released

under the terms of the Apache v2.0 open-source license.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 7 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

1 Introduction

Work package 3 (WP3) is about developing and integrating a range of digital

enablers, based on background technological developments of the partners and

properly customized to the needs of ZDM, to support the QU4LITY Autonomous

Quality paradigm as described in deliverable D2.4. Furthermore, these digital

enablers will be integrated as part of ZDM solutions so as to emphasizes

interoperability and flexibility and will be further exploited (even outside the project

boundaries) through the QU4LITY marketplace (as part of the WP8 activities). Last

but not least, the term “digital enablers” implies that each digital component will be

reusable and accessible via an Open API, which will facilitate their use in ZDM

processes and applications.

The challenge faced by QUALITY is the requirement of interoperability among ZDM

digital enablers which may deeply differ from each other. QU4LITY-based systems

should, in fact, rely on a layer of abstraction, which, to the extent possible, obscures

the system from the underlying implementation.

In this context, task T3.6 has developed a permissioned Distributed Ledger

Technology (DLT) infrastructure for quality management processes and related

supply chain interactions. Such infrastructure enables secure state sharing and

synchronization of distributed industrial processes, and autonomous code execution

by the means of smart contracts. This opens a new world of possibilities in terms of

agreement management across manufacturers, customers and other stakeholders.

Furthermore, DLT can be exploited to address today’s challenge in complex and often

internationally spanning supply chains; for example, granular evaluation of

provenance of physical goods, smart diagnostics and self-service application for

machines and cost avoidance impact on supply chain transactions. Many other

challenges can be found and solved with distributed ledger technologies, thus,

enriching end-users’ experience inside QU4LITY platform, contrary to monolithic non-

distributed systems.

This D3.12 deliverable, representing the final outcome of task T3.6, is a major update

over the previously-released D3.11 and also includes the documentation of the three

digital enablers developed as Distributed Applications (DApps) on top of the above-

mentioned DLT infrastructure.

The methodology followed for the development and the prototyping of the three

DApps was a three-step process. The first two were completed during the first part

of the task schedule, which culminated with the release of the D3.11 report (M12).

• Phase 1 – Requirement analysis and preliminary design. The

requirements for the use of DLT in the QU4LITY context have been identified,

with the active involvement of prospect users. A first hypothesis of the to-be-

developed DApps was presented in deliverable D3.11.

• Phase 2 – Platform selection and infrastructure deployment. The state-

of-the-art of DLT was investigated, resulting into the selection of an open-

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 8 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

source “permissioned” Blockchain platform – i.e., Hyperledger Fabric (HLF) –

as the baseline for the development of DApps. Consequently, a dedicated HLF

network was deployed and configured as the QU4LITY Value Chain Ledger

(VCL).

• Phase 3 – DApp design and implementation: Finally, the preliminary

designs from Phase 1 were reviewed in light of the feedback received within

the project, resulting into the specification of the three DApps to be

implemented by the task. A prototype of each DApp was developed and

deployed on the VCL.

This document is focused on the third phase, and its structure is as follows:

• Section #1 Introduction – This present section.

• Section #2 DLT for QU4LITY – A recap of the general approach to DLT and

smart contracts, in the context of the QU4LITY Reference Architecture. This

section is an update to what already discussed in deliverable D3.11.

• Section #3 QU4LITY’s DLT infrastructure – A recap of the preliminary

work done in the scope of task T3.6 during the first part of the project –

basically, the selection of the baseline blockchain software and the set up of

the QU4LITY Value chain Ledger.

• Section #4 QU4LITY’s DLT digital enablers – This is the core of the

present document, where the main results of the second part of the T3.6

schedule are reported. It contains a thorough description of the three digital

enablers that were designed, prototyped and deployed as part of the

QU4LITY’s DLT infrastructure.

• Section #5 Conclusion – Final considerations.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 9 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

2 DLT for QU4LITY
In the previous version of this deliverable, we have used the “Context and

Requirements” section for positioning the Value Chain Ledger (VCL) and the Private

Ledger (PL) components in the general context of ZDM and, more specifically, of the

QU4LITY project. To facilitate understanding of this final version, here we briefly

recap our reasoning.

2.1 Context

Figure 1 below shows the VCL and PL components framed inside the Digital

Infrastructures layer of QU4LITY’s Reference Architecture (RA). Their role with

respect to the other components is to ensure data integrity and non-repudiation.

Their novelty is that they enable such functionality in distributed environments,

where documents must travel across organizations who do not share a common

Enterprise Resource Planning (ERP) system.

Figure 1 - QU4LITY’s Reference Architecture

In DLT, every participant – often referred to as a “node” of the system – maintains a

copy of all transactions. This provides an audit trail of every transaction and/or event

that has occurred, so that any participant can detect if individual records or the trail

itself have been altered by someone else – on purpose or by mistake. Overall, the

DLT approach to recording transactions and events offers some business benefits

over conventional techniques:

• A transparent, validated single version of the truth, which is ensured by the

anti-tampering properties and the distributed consensus mechanisms of the

blockchain network.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 10 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

• Real-time visibility on the entire network, as the blockchain records all

transactions and breaks the information silos across the various trading

parties.

2.2 Potential use cases

The following paragraphs outline some manufacturing use cases that, according to

research literature [Andrews17], [Wang17], can be best addressed through DLT.

2.2.1 Supply chain tracing

DLT can be used to offer highly secure and immutable access to supply chain data

[Kim18]. For raw materials and product parts, they are able to provide a digital

platform enabling their physical traceability. In combination with IoT-enabled

sensors, they can monitor the journey of a good from raw material to finished

product. First, the sensors capture finely granular real-time data about environment

characteristics as well as location and timestamps throughout the supply chain. Then

the DLT platforms manage the chain of custody for said goods, enabling ownership

to be transferred and traded on a network using smart contracts. What is more,

governance and validation of the logs for those activities is equally distributed

between the peer nodes of the system, making their tampering an expensive

therefore uneconomical effort for malevolent actors.

2.2.2 Equipment identity management

DLT technologies are well-suited to provide an effective mechanism that enables

equipment management, and more specifically identity authentication and

authorization. Quality control requires strict supervision over which equipment has

clearance to modify which subsets of data collections. What is more, the logs

assembled during the procedure ought to be immutable. By assigning a digital

identifier to each piece of equipment, allowing it to univocally “sign” its interactions

with data, transparency and, therefore, an uncontested single source of truth are

formulated step by step. In practice, DLT provides the possibility of creating unique

accounts, fitted with a pair of cryptographic keys; a public one to be universally

authenticated and a private one to “sign” transactions. In such a configuration, any

interaction with data is signed with the equipment's private key and can be verified

by anyone who has access to the latter's public key. This verification proves that the

equipment had access to the private key, and therefore is likely to be the one

associated with the public key. This also ensures that the digital signature has not

been tampered with, as it is mathematically bound to the key it originally was made

with. From their part, smart contracts can be employed for both handling

authorization requests and translating authorization policies into machine-readable

self-executing code.

2.2.3 Smart machine’s diagnostics and pay-per-use

DLT can be used for developing diagnostics and self-service applications for “smart”

machines, where the machines themselves will be able to monitor their state,

diagnose problems, and autonomously place service, consumables replenishment, or

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 11 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

part replacement requests to the machine maintenance vendors. DLT technologies

further expand the possibilities for using an innovative pay-per-use model for those

services. The rationale is that a “ledger service” is responsible of evaluating the

service received (to the satisfaction of both the owner and the user), while the ledger

itself ensures that the relevant log recordings cannot be falsified in any way.

2.2.4 Monitoring conformity to SLAs, standards and regulation

The advantages of translating Service Level Agreements to self-imposed smart

contracts are noteworthy [Uriarte18]. First and foremost, this process automates

their lifecycle stages: discovery and negotiation, deployment, monitoring,

billing/penalty and termination. Furthermore, it introduces clarity, since all rules are

univocally defined, and transparency, since all interactions between physical and

non-physical parties are recorded in a definitive manner. In a real-world application,

a “master” smart contract can be designed to enforce legal standards and

agreements of any kind. By cross-examining the data uploaded by different

stakeholders all parties can verify to what extent the process meets the predefined

regulatory conditions. Once all the requirements are met, the regulatory approval

may be automatically granted through a smart contract with no further need for on-

site inspections or in-person verification.

2.2.5 Circular economy

The term “circular economy” refers to an economic system aimed at employing reuse,

sharing, repair, refurbishment, remanufacturing and recycling to minimize the use of

resource inputs and the creation of waste. From a manufacturers’ perspective it is an

attractive option for social, financial, environmental and legal reasons. However, a

key success factor in any such a production chain is the condition and quality status

of the returned items to be pushed into the remanufacturing process. A distributed

ledger that constantly monitors the lifecycle of a product arms a remanufacturer with

substantial advantages towards this direction. First, it provides an accurate and

unchangeable account of the item’s provenance and journey, filtering out counterfeit

and misused products. Second, it asserts quite transparently that the item enters

remanufacturing being on a status that complies with some minimum quality criteria

and desirable specifications. And, finally, it provides a guarantee of the item’s status

after the finalization of the remanufacturing process, useful, for instance, to compose

warranty documents.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 12 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

3 QU4LITY’s DLT infrastructure
As explained in the previous version of this deliverable, the baseline blockchain

platform we have selected for QU4LITY is Hyperledger Fabric (HLF), now at release

v2.2. Besides meeting all the requirements for QU4LITY’s DLT infrastructure, HLF

supports multi-tenancy through channels, a feature that is used to isolate groups of

participants within private encrypted ledgers. When a channel is defined, only those

nodes that are allowed to join it will be able to access its ledger and participate to its

transactions. Moreover, each node can join multiple channels at the same time. This

extreme flexibility allows one single HLF infrastructure – i.e., a set of physical nodes

– to serve multiple logical networks, each dedicated to a specific business ecosystem.

This was indeed our approach in QU4LITY: one HLF deployment providing the VCL

and supporting any number of PLs. To facilitate QU4LITY partners in running their

experiments, we choose to run all the VCL nodes on the same Cloud facility, operated

by ENG as part of their Hyperlab initiative1. This means that a naturally decentralized

system is actually managed as a centralized one (a model that is often referred to as

“Blockchain-as-a-Service”). With this architecture we don’t exploit at all the

decentralization concept that is at the heart of the DLT paradigm, but on the other

hand we gain a significant advantage in terms of accessibility, as QU4LITY partners

that wish to experiment with DLT do not need to set up their own node. This

compromise is acceptable in the context of a project that doesn’t aim at validating a

blockchain platform, but rather at exploring its potential in real-world business cases.

The baseline QU4LITY DLT infrastructure thus consists of the following elements:

• Certificate Authority (CA) – Standard set of tools for releasing identity / access

credentials (actually, self-signed X509 certificates) to participants.

• Membership Service Provider (MSP) – Manages identity authentication and

authorization, enforcing access control rules on the blockchain network.

• Ordering Service – Defines the system-wide temporal sequence by which

transactions, executed concurrently on individual nodes, are applied to the

ledger.

• Peer Nodes – Four nodes, all belonging to the same organization (i.e., ENG).

This deployment provides the “minimum viable product” in terms of infrastructure: it

implements a basic VCL, with one common ledger that all QU4LITY partners can

operate on – once assigned the proper credentials and access clearance. This VCL

can be extended with more Peer Nodes if required, and additional VCLs can also be

created on demand just by configuring new channels.

Each time there is the need for the deployment of a PL, the following will be added:

• Configuration of a dedicated channel.

• One private Peer Node for each PL participant (at least two), all of them

attached to the dedicated channel. It is possible – but not required – for

these private nodes to be deployed by the participant organization(s) on

their own premises.

1 See https://www.eng.it/en/enabling-technologies/blockchain

https://www.eng.it/en/enabling-technologies/blockchain

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 13 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

4 QU4LITY’s DLT digital enablers

4.1 General view of Decentralized Applications in QU4LITY

The QU4LITY DLT infrastructure described in the preceding section is just what the

names suggests: a hosting facility for decentralized applications. The QU4LITY

project, however, also provides a basic portfolio of such applications, which are meant

to enable decentralized quality management use cases. Each enabler is implemented

as a Decentralized Application (DApp). As a DApp provides a coordination workspace

for a collaborative process, all participants – generally referred to as user applications

– need to be integrated into the system. To facilitate this system integration task,

the structure of a “standard” DApp – and of its distribution package – consists of

three separate elements:

1. A smart contract implementation, which is actually an HLF chaincode program.

The chaincode exposes an access-controlled API that is meant to be invoked

by client software. Such API is not documented, because user applications will

never invoke it directly; instead, they will use the local proxy included in the

distribution package (see point #2).

2. A client library for Java environments, packaged as a single JAR file that also

contains the software documentation in JavaDoc format. The library provides

an in-process API to user applications. The in-process API is actually a higher-

level abstraction of the chaincode’s API. User applications will invoke the

remote API through the local proxy in a simple and straightforward way: the

technical details of how the client library connects to and communicates with

the chaincode (low-level gRPC protocols, authentication / authorization) are

kept hidden from the caller. Moreover, all data structures defined by the in-

process API are implemented in the client library as Java classes, so that user

application coders don’t need to deal with text-based representations like XML

or JSON.

3. The general documentation of the DApp. This is not the same as the API

documentation, because it explains the use case workflow and goes into

details of the data model – i.e., the structure of the “application state” that is

managed by the chaincode.

Figure 2 - DApp structure

The integration of a user application with a standard DApp starts by “importing” the

client library. The choice of the Java language for the development of the client library

is a constraint: although it is theoretically possible to call Java libraries from other

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 14 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

environments, the most straightforward way to do it is that both the user application

and the client library are executed within the same JVM. The minimum supported

version of the Java environment is 1.8.

As a side note, it is worth pointing out that other ways of packaging and integrating

a DApp do exist and have actually been followed in some specific cases: in the

sections that follow (see §4.2.2 and §4.2.3), these cases will be explained in some

detail. However, the chaincode + client library approach is considered a the “golden

standard” for QU4LITY’s VLC and PL(s), and DApp developers are encouraged to

adopt it.

Once the integration layer has been coded into the user application, proper

configuration is needed in order for the integrated system to work. Two things are

required on the user application’s side: correct network parameters and valid

credentials for access. The former are pointers to a specific chaincode instance

deployed on a given channel of a given HLF network; the latter is a digital certificate,

released by the Certificate Authority, that identifies an authorized user. Both are

provided by Hyperlab’s admins on request and delivered as a single ZIP file that must

be copied to the local filesystem of the device hosting the user application.

Once everything is set up, using a DApp through its local client is not much different

than making in-process calls. One thing that developers of user applications need to

be aware of is that calls, despite being local, are actually triggering a transaction on

a remote distributed system. Although chaincode transactions are asynchronous, the

client library will simulate a synchronous call by blocking the caller until the remote

transaction is confirmed on all the nodes of the system. This introduces significant

latency: the time elapsed until control is returned to the caller is typically some orders

of magnitude longer than an equivalent local call. Mileage may vary, so developers

are strongly encouraged to verify that the latency they experience is well-tolerated

by their AQ/ZDM process.

4.2 QU4LITY’s Decentralized Application catalogue

Three DApp enablers have been developed in the scope of the QU4LITY project, one

of which plays an additional “support” role for the other two:

• Quality Clearing House (QCH). QCH enables a decentralized workflow that

targets a typical Quality Management / ZDM process in a non-hierarchical

supply chain scenario.

• Secure Message Board (SMB). SMB enables the publishing of sensitive

content (e.g., software, firmware, algorithms, parameters, data, documents)

to subscriber channels, with the added value of strong guarantees on

provenance, integrity and confidentiality.

• Secure Identity Directory (SID). SID enables the decentralized

management of digital identities and authentication credentials for both

human and machine actors. SID is also used by both QCH and SMB as their

identity management infrastructure.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 15 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

The chaincode of all these DApps is currently deployed on the QU4LITY VCL

infrastructure: any user application that has been properly integrated and configured

(see previous section) can access their functionality by connecting through the public

Internet. The source code of both the chaincode and of the client library has been

released under the terms of the Apache v2.0 open-source license.

4.2.1 Quality Clearing House DApp

4.2.1.1 QCH general description

QCH enables a decentralized workflow that targets a typical Quality Management /

ZDM process in a non-hierarchical supply chain scenario. It provides a common

“system of record” for a manufacturing ecosystem where actors need to continuously

assess the quality of raw material, parts and final products and match the results

against contractual standards that may change frequently. Thanks to distributed

ledger technology, QCH records are secure and trustworthy: they are timestamped,

immutable and non-repudiable. Data storage and business logic are replicated on all

the nodes of the system, which are operated equally by all participants, so that no

single “owner” of the system exists who may introduce bias in the process.

4.2.1.2 QCH data model and workflow

The supply chain processes supported by QCH follow a simple pattern, the workflow

of which is described below. To exemplify the pattern and for the sake of simplicity,

we have identified distinct “actors” playing the three roles embodied in the system

(Quality Master, Supplier, Quality Verifier); however, in real-world supply chain

processes it is likely that multiple organizations will play the Supplier role, and/or

that one single organization will play the remaining ones.

Ledger records

All ledger records have their own unique identifier, which is used internally for cross-

reference, and are owned by the party that creates them.

• Quality Assessment Data Model (QADM): a structured digital document that

defines the standard of quality that applies to a given material, part or

product, as stipulated by a commercial agreement (which is out of this scope).

The standard is expressed in terms of a list of measurements, each consisting

of a qualitative definition2 and a quantitative range. One QADM document may

exist for the entire duration of a contract, or new versions may be created

that override previous ones in order to follow along the evolution of quality

requirements.

• Shipping Unit Manifest (SUM): a digital record that identifies a shipped batch

of materials, parts or products as subject to a given quality agreement. It

consists of a pointer to an existing QADM and of a list of IDs, each associated

to a physical item in the batch.

• Quality Assessment Report (QAR): a digital record that reports the quality

measurements taken on a received batch of materials, parts or products,

along the guidelines of their agreed standard. It consists of pointers to an

2 The vocabulary used to identify measurements must be in common between all parties involved: the
meaning of each measurement declaration, which includes not only the “what” but also the “how” and
possibly the “when”, must be unambiguous for everyone. To this goal, a formal ontology may be defined.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 16 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

existing QADM and SUM, plus the actual values of all the measurements taken.

Depending on the quality agreement in place, measurements may be reported

per-batch (average values) or per-item.

Process roles

• Quality Master: it’s the company that manages the process. It creates the

QADM document(s).

• Supplier: it’s a member of the supply chain that manufactures / provides

materials, parts or products. It creates SUM records.

• Quality Verifier: it is responsible of measuring the quality parameters on

physical items with respect to the standard. It may be the same entity as

the Quality Master or a different one – i.e., a third party in charge of

independent assessment. In the latter case, it should be trusted by all the

involved parties. The Quality Verifier creates QAR documents.

Figure 3 – QCH DApp: ledger records and process roles

Example

Factory A plays the role of Quality Master.

Factory B plays the role of Supplier.

Company C plays the role of Quality Verifier.

1. When a commercial agreement is first defined, Factory A defines the quality

standard and creates a new QADM, which is published on the QCH. Factory

A also sets up and configures its quality assessment process and tools in

collaboration with Company C, which provides the metrology equipment that

is deployed on Factory A’s premises.

2. Factory B prepares a batch of goods under the aforementioned agreement.

The physical items in the batch are tagged with individual IDs. When the

batch is shipped, Factory B publishes a new SUM record on the QHC that

points to the reference QADM and lists all the IDs contained in the shipment.

3. Factory A receives the shipment. As the individual items herein contained

are unloaded, they are sent to a quality assessment facility where the

equipment provided by Company C is in use. The metrology tool read the

tag, identifies the item and execute the appropriate measurements.

4. When the shipment has been entirely processed, a QAR is generated by the

metrology tool and published on the QCH on behalf of Company C.

5. The process can now iterate any number of times, starting from step #2.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 17 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

6. When payment to Factory B is due, Factory A will apply any penalties and

discounts defined in the agreement for missed quality targets documented in

the QCH.

4.2.1.3 QCH API

As already explained in §4.1, the QCH API is exposed by a Java library. The Java

classes that are available to the embedding application are the following:

• QualityModel: a Java “data transfer object” (DTO) that represents a QADM

entity; contains 1-n QualityParameter DTOs.

• Shipment: a DTO that represents a SUM entity; contains 1-n Item DTOs.

• QualityAssessment: represents a QAR entity, contains 1-n ItemAssessment

DTOs.

• QualityClearingHouse: an interface that represents the smart contract’s

local proxy, through which all read and write operations on the distributed

ledger can be executed. The concrete implementation of the interface is

hidden by the factory class (see next point).

• QualityClearingHouseFactory: a factory class exposing a single static

method, which creates an instance of the smart contract’s local proxy (see

previous point). The method needs a pointer to a local configuration directory,

the contents of which determine the actual implementation class that will be

used as the proxy.

To invoke QCH operations, the embedding application must first obtain an instance

of the proxy class from its factory:

QualityClearingHouse proxy =

QualityClearingHouseFactory.getProxy(configPath)

The factory method receives a single parameter, which must be the absolute path of

the local configuration directory. In order for this to work at runtime, a local

configuration directory must be created as part of the application’s deployment

procedure. The directory is created by expanding the wallet.zip file that is provided

– on demand – by the administrator of the VCL. The ZIP file contains not only the

correct network pointers to the QCH smart contract, but also the authentication

credentials that the client library will use to establish the connection. For this reason,

the wallet.zip is strictly personal for each authorized user and should never be

shared with anyone else.

Once the embedding application has obtained the proxy object, this can be used for

all the operations documented in the UML class diagram below – see Figure 4 below.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 18 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Figure 4 - QCH API documentation

4.2.1.4 QCH availability

The QCH smart contract is installed on QU4LITY’s VCL. In order to receive the

personal wallet.zip file that enables client access, developers and integrators

should contact the ENG team that is responsible for QU4LITY’s task T3.6. Any

QU4LITY partner is allowed to experiment online with the DApp, but with the caveat

that the VCL is just a “sandbox” environment: no guarantees are provided by the

VCL administrator that the system will be up 24/7, that data will be persisted for long

periods of time and that security will be properly managed. Under no circumstances

should this shared instance of the DApp be used to store valuable or confidential

information or to manage critical processes. If this is indeed the case, we recommend

a dedicated installation of the QCH smart contract on a privately-owned PL.

The source code of the QCH DApp – including the smart contract – is publicly available

on GitHub: https://github.com/Engineering-Research-and-Development/qu4lity-

dapps/tree/master/chq.

https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/chq
https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/chq

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 19 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

4.2.2 Secure Message Board DApp

4.2.2.1 SMB general description

SMB enables the publishing of sensitive content (e.g., software, firmware,

algorithms, parameters, data, documents) to subscriber channels, with the added

value of strong guarantees on provenance, integrity and confidentiality. For instance,

an OEM may safely send customized software updates to any specific smart machine

installed at a client site, or to all machines of a certain type. While the actual content

is stored as a binary object on any cloud facility, an immutable and timestamped

record on the ledger provides a “digital seal” that guarantees its authenticity: the

record includes a hash value calculated on the content, so that any alteration to the

latter can be easily detected. Moreover, the SMB smart contract – in cooperation with

SID (see §4.2.3) – ensures that the publisher is always correctly identified and cannot

be impersonated by a malicious actor.

This version of the DApp is distributed together with a command-line client tool that

offers a simple interactive interface. The client tool provides the basic read / write

functions: a POST command for publishing new messages or replacing exiting ones

with an updated version, a GET command for retrieving the latest version of given

message and a VERSION command that queries for the current version number of a

given message.

It is worth noting that the current implementation only supports Google Drive as the

cloud-based persistent storage for binary objects. Future versions will remove this

limitation.

4.2.2.2 SMB data model and workflow

The SMB workflow is straightforward. The Publisher, who must already own a

registered SID identity, publishes a content item by executing a command-line tool.

The tool must receive as the execution arguments at least the name assigned to the

item and a local filesystem path that points to its content.

The item name can be specified within the namespace defined that is composed of

up to three nested components: the domain, the environment and the process (in

decreasing order of scope). So, for example, a content item can have the plain

“myNewItem” name, which implies that “myNewItem” is a unique identifier in the

top-level scope; while another may be identified as

“myDomain/myEnvironment/myProcess/myNewItem”: although this shares the

same name with the previous item, it lives in the

“myDomain/myEnvironment/myProcess” scope, so that the two homonymous items

are actually distinct and unrelated. It is important to understand that each

namespace, including the anonymous top-level one, defines a publishing

Channel: Subscribers can “listen” on one or more specific Channels and will receive

a notification when a new item is published there. Another important point is that

published items can be updated: when an item is published on a Channel and has

the same name of a previously-published one on the same Channel, the new item

replaces the previous one as the “current version”. All versions are kept in permanent

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 20 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

storage, but the latest is the one that is retrieved when no version number is specified

in the request.

Once the tool is launched for a POST operation, as described above, it first uploads

the item contents to the cloud storage, which will store it as an opaque binary object

identified by a unique key. The tool then calculates the hash value of the content,

determines its size in bytes and finally invokes the SMB smart contract,

impersonating the Publisher’s identity (to this goal, the private wallet containing the

Publisher’s credentials must be installed together with the tool). Finally, the smart

contract (after verifying the caller’s identity) creates a new record on the ledger: the

Message Manifest. This record is basically a public announcement – to whoever has

access to the ledger – that the new item has been published. Moreover, the record

contains a pointer to the binary object in the permanent storage and, most

importantly, the SID identity of the Publisher and the hash value of the content.

When instead the tool is launched for a GET operation – receiving the name of the

items as an argument – it first reads the corresponding Message Manifest record on

the ledger, from where it retrieves the information described before. It then proceeds

to download the item’s content from the cloud storage, using the pointer. The content

is saved as a file on the local filesystem. Before confirming to the caller that the

retrieve operation was successful, the tool checks that the hash value stored in the

Message Manifest is actually matching the hash value calculated on the saved copy.

This ensures that no tampering of the content has happened after the item was

published.

Ledger record

The structure of the Message Manifest record can be seen in Figure 5 below:

Figure 5 – SMB DApp: data model

Note that the signedBy and confidentalFor fields are unused in the current version

of the DApp. In the future, they may be used to verify the digital signature of the

Author (who may be a different entity than the Publisher) and for implementing one-

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 21 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

to-one confidentiality (content is encrypted by the Published using the public key of

the Subscriber).

Process roles

• Publisher: sender of messages. It needs to send messages “securely” (i.e.,

ensuring that the original message cannot be tampered with) on a Channel,

possibly without knowing in advance the recipients.

• Subscriber: receiver of messages. It needs to receive messages sent on any

Channel it is interested to, and also to verify that the received messages are

“authentic” (i.e., they come from a well-identified Publisher and have not been

altered).

Figure 6 - SMB DApp: ledger records and process roles

Example

OEM plays the role of Publisher.

Smart Tool A and Smart Tool B play the role of Subscriber.

Context: Smart Tool A and Smart Tool B are two intelligent manufacturing machines

of the same type, manufactured by OEM, and are installed in two different factories.

OEM has a remote management agreement with its customers: the output quality of

its tools is measured on-site and reported to the OEM, the indicators reported are

analyzed, possible optimizations to the tool’s parameters and logic are implemented

by the OEM as firmware updates, and finally the updates are pushed back to the

running tools, without any disruption in shopfloor operations or even human

intervention. The last part of the process is the one covered by the SMB DApp in the

use case that follows. Smart Tool A & B both embed an SMB client.

1. When Smart Tool A is deployed, it is configured such that the embedded SMB

client will operate under its own unique SID identity (a local wallet containing

the identity’s private key is created) and will listen to two SMB Channels that

are named as follows:

Channel Main (model-specific updates)

domain=OEMCompanyName-SmartToolModelName

environment=(void)

process=(void)

Channel A (machine-specific updates)

domain=OEMCompanyName-SmartToolModelName

environment=RemoteQualityManagementAgreementABC

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 22 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

process=SmartToolSerial0015302

2. When Smart Tool B is deployed, it goes through the same installation process

as Smart Tool A, but the second configured Channel is different:

Channel B (machine-specific updates)

domain=OEMCompanyName-SmartToolModelName

environment=RemoteQualityManagementAgreementXYZ

process=SmartToolSerial0015677

This configuration reflects the fact that the remote management agreement

between OEM and the factory that operates Smart Tool B is different, and of

course that the Smart Tool B is a different physical machine. Note that this

same factory may deploy additional machines of the same model, which will

share the same “environment” but have their distinct “process” – meaning

that they will all listen to different machine-specific Channels.

3. During the operational lifetime of Smart Tool A, the continuous quality

assessment process identifies a specific fix that will improve an indicator.

Consequently, OEM prepares a patch to be applied only to Smart Tool A. This

patch will not affect the basic logic but only some site-specific parameters.

4. OEM publishes the patch on SMB, setting the Channel arguments as seen at

step #1, Channel A. The “name” property of the published item is set to

“parameter-patch”.

5. Smart Tool A, which listens to both Channel Main and Channel A, detects that

a new item has been published on channel A. It then retrieves the item,

checking that the Publisher is actually OEM and that the content matches the

hash signature. As the item name is “parameter-patch”, Smart Tool A

identifies the content as a patch to be applied on its own site parameters.

6. Smart Tool A automatically applies the patch as instructed, thus improving

the quality of its output.

7. OEM designs an improvement to the logic of the product model that both

Smart Tool A and Smart Tool B belong to. Such improvement is implemented

as a firmware update. Consequently, OEM prepares a patch to be applied to

all machines of that type. This patch will affect the basic logic but will leave

any site-specific parameter unchanged.

8. OEM publishes the patch on SMB, setting the Channel arguments as seen at

step #1, Channel Main. The “name” property of the published item is set to

“firmware-patch”.

9. Smart Tool A and Smart Tool B, both listening to both Channel Main, detect

that a new item has been published on the channel. They then retrieve the

item, check that the Publisher is actually OEM and that the content matches

the hash signature. As the item name is “firmware-patch”, both Smart Tool A

and Smart Tool B identify the content as a patch to be applied on their own

firmware.

10. Smart Tool A and Smart Tool B signal to their local operation environment

that a firmware path is ready to be installed. When the operators deem that

this is possible with minimal disruption of the shopfloor processes, they

manually activate the update.

Steps 3 to 6 can be repeated any number of times, for both Smart Tool A and Smart

Tool B. Same for steps 7-10. The two sequences may be intertwined in any order.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 23 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Note that firmware updates may also include a different configuration of the SMB

client, thus changing the Channels that machines are listened to.

4.2.2.3 SMB command-line tool

The CL tool is not interactive: to perform a single operation, it must be launched from

the system with a specific command. The command is structured as follows (it is

assumed that the Java JRE has been configured correctly):

java - jar smb-ledger-<version>.jar

• -w (mandatory): path to a local directory containing the wallet files

• -o (mandatory): operation requested [POST, GET or VERSION]

• -f (mandatory for POST and GET operations): path of the local file that either

holds the content of the new item to be published (POST) or will be created to

hold the content of the existing item to be retrieved (GET)
• -d (optional): “domain” component of the Channel identifier

• -e (optional): “environment” component of the Channel identifier

• -p (optional): “process” component of the Channel identifier

• -n (mandatory): name of the content item

• -v (optional, supported only for GET operations): version number

At each execution, the related log (activity and any errors) is added to the end of the

smb-ledger.log, located in the logs sub-folder.

Examples for Windows systems (mandatory arguments in bold):

• java -jar smb-ledger-1.0.0.jar

-w C:\Users\mywindowsuser\smb\smbuser

-o POST

-d mydomain -e myenv -p myprocess -n myobject

-f C:\Users\mywindowsuser\Documents\mycontent-myversion.bin

• java -jar smb-ledger-1.0.0.jar

-w C:\Users\mywindowsuser\smb\smbuser

-o GET

-d mydomain -e myenv -p myprocess -v targetversion -n myobject

-f C:\Users\mywindowsuser\MyFolder\mycontent.bin

• java -jar smb-ledger-1.0.0.jar

-w C:\Users\mywindowsuser\smb\smbuser

-o VERSION

-d mydomain -e myenv -p myprocess -n myobject

4.2.2.4 SMB availability

The SMB smart contract is installed on QU4LITY’s VCL. In order to receive the

personal wallet.zip file that enables client access, developers and integrators

should contact the ENG team that is responsible for QU4LITY’s task T3.6. Any

QU4LITY partner is allowed to experiment online with the DApp, but with the caveat

that the VCL is just a “sandbox” environment: no guarantees are provided by the

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 24 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

VCL administrator that the system will be up 24/7, that data will be persisted for long

periods of time and that security will be properly managed. Under no circumstances

should this shared instance of the DApp be used to store valuable or confidential

information or to manage critical processes. If this is indeed the case, we recommend

a dedicated installation of the SMB smart contract on a privately-owned PL.

The source code of the SMB DApp, including its command-line client tool, is publicly

available on GitHub: https://github.com/Engineering-Research-and-

Development/qu4lity-dapps/tree/master/smb.

4.2.3 Secure Identity Directory DApp

4.2.3.1 SID general description

SID is a decentralized infrastructure for identity management. It answers the problem

of how a decentralized application may depend on common, trustworthy information

about user identities without introducing any centralization bottleneck. Therefore,

SID is centered on a smart contract that can be deployed either on the QU4LITY VCL

or on any PL. User and machine identities are registered on the ledger in a format

that is compatible with the DID standard (see next section) but also contains a rich

(and extensible) set of information. This decentralized registry of identity descriptors

allows any DApp that supports SID (including SID itself, as will be explained later) to

assess the identity of their users in a secure way and, optionally, to enforce access

restrictions according to their own policies.

4.2.3.2 SID data model and workflow

Every identity in the SID registry is associated to an alphanumeric ID, which in SID

jargon is also called an address, because it’s actually a globally unique name that

points to the same identity on any network and on any system. Together with the

address, every identity descriptor in the SID registry also contains a public key, for

the purpose of validating ownership claims: it is assumed that only the legitimate

owner of an identity holds – in private storage – a copy of the matching private key

(this rule must be enforced by the identity creation process, as we will see later). On

this assumption, applications and online services can authenticate any SID-registered

user by obtaining a cryptographic proof of the possession of the private key. This is

done by means of a challenge-response protocol:

• the user claims to be the legitimate owner of a given SID address

• the verifiers look up the corresponding public key in the SID registry

• the verifier creates a string of random text and sends it to the user as a

“challenge”

• the user digitally signs the challenge with its private key, and sends the result

to the verifier as the “response”

• finally, the verifier checks that the signature in the response actually matches

the challenge.

https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/smb
https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/smb

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 25 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

In this way, the identity claim is verified without any disclosure of the private key –

as opposed to what happens with a password, which must be a “shared secret” known

to both the user and the verifier.

The above-described mechanism is commonly used in scenarios where users are

purposely kept anonymous – like cryptocurrencies and self-sovereign identity (SSI)

schemes. Indeed, SID is compatible with SSI systems because identity descriptors

are easily translated into a W3C standard interoperability format called DID

Document (see https://www.w3.org/TR/did-core/). However, SID is focused on B2B

and IIoT interactions, where anonymity is not an option. Thus, identity descriptors in

the SID registry are enriched with additional information that points, unambiguously,

to the real-world entity (RWE) that qualifies as the legitimate owner.

Ledger records

The structure of the identity descriptor can be seen in Figure 7 below. It is actually

composed of one “Identity” record and one or more related “IdentityStatus” sub-

records. The latter are used not only to define the current status of an identity

(active, suspended, revoked) but also to track the status history back in time, so

that it would be possible to assess – for instance – is a given identity was active at a

given past date/time.

Figure 7 - SID DApp: data model

The pkey field contains the value of the identity’s public key, encoded as a string

using the common Base64 algorithm. The public key is the actual unique identifier,

because the id field – the identity’s address – is computed from the public key’s

binary value with an algorithm similar to that used in the Bitcoin system for “Bitcoin

addresses”. The end field, when present, is a reference to the id of the identity’s

controller – i.e., the SID identity that is responsible for management, if any (for more

info, see the coming section on the identity management workflow). Finally, the ext

field is used to extend the identity descriptor with additional information. In the SID

DApp, this is actually the contact information of the RWE that owns the identity. This

is represented with the following JSON structure:

https://www.w3.org/TR/did-core/

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 26 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

{

 "DAMP:RWE" : {

 "LegalName" : "..",

 "LegalAddress" : {

 "AddressLine1" : "..",

 "AddressLine2" : "..",

 "AddressLine3" : "..",

 "City" : "..",

 "Region" : "..",

 "Postcode" : "..",

 "Country" : ".."

 },

 "DUN" : "..", // Data Universal Numbering System

 "BIC" : "..", // Business Identifier Codes

 "TIN" : "..", // Taxpayer Identification Number

 "LEI" : ".." // Legal Entity Identifier

 }

}

Identity management workflow

In the SID world, every user can read the public registry without restrictions,

executing a “read” API operation. On the other hand, creating or modifying an identity

descriptor – executing a “write” API operation – can only be done under certain

conditions: basically, the user must qualify either as a platform-level administrator

or – more commonly – as the “controller” of the target identity. Here is where things

get a bit complicated, and some understanding of how SID authentication and access

control work is required.

Authentication in SID happens on two levels: the native Hyperledger Fabric (HLF)

protocol layer and, on top of it, the SID challenge/response protocol previously

described. The lowest level ensures that the calling client has been authorized by the

HLF platform’s administrator to connect to the HLF network and invoke HLF smart

contracts in general – and the SID smart contract in particular. This is a very broad

rule, but is required by the HLF system, as HLF is a “permissioned” blockchain. To

pass this check, an X509 digital certificate signed by the platform’s certificate

authority (usually, the same entity that has the role of platform’s administrator),

must be issued to the user and installed on the user’s client software. Once this pre-

requisite is met, the user is able to invoke both “read” and “write” SID API operations.

However, when the SID smart contract is invoked for a “write” operation, it will also

make an additional check: the caller must either have a “special” role as an HLF

platform user (“native” authentication + authorization) or, if that is not the case, it

must be the legitimate owner of a pre-existing SID identity (SID authentication);

moreover, the SID identity of the caller must be the controller of the SID identity

that is the target of the operation. For example, if User A is the owner of Identity A

and wants to create a new identity for User B – i.e., Identity B – the descriptor if the

new identity must hold a reference to Identity A as the controller (actually, the end

field of the record – see the data model in the previous section). One the Identity B

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 27 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

record has been created and registered in SID, only User A will be allowed to make

changes to that record – for instance, setting its status to Suspended or Revoked.

The practical impact of this authorization scheme is that “regular” users (in other

words, those who do not have any special privilege on the platform, which is the

typical case) wishing to have their own identity registered on SID will have to ask

another SID user to endorse them. This endorsement should not be given lightly,

because the controller of a SID identity is to all effects responsible for ensuring A)

that the information registered on the ledger (e.g., the RWE contact information –

see the data model section) is correct, and B) that only the identity owner has the

matching private key. While the first condition depends on factors that are outside

the scope of the SID DApp, the second is easily achieved by the proper use of a

software component that is also part of the SID distribution: the SID Wallet

command-line tool – see §0.

4.2.3.3 SID API

The SID API is not exposed directly by the smart contract. Instead, a REST-over-

HTTP interface is provided by a “SID API server” that acts as a mediator between the

caller and the smart contract. This architectural choice makes life much easier on the

client side, because standard HTTP clients (e.g., web browsers) are supported, but

has a profound impact on how the SID DApp is deployed and used. Clearly enough,

standard HTTP clients are not capable of handling the SID challenge-response

protocol, so the SID API server must impersonate the caller and forward every call

to the smart contract, taking full responsibility for authentication. To do that, the SID

API server needs full access to the private credentials of the user, which are kept

locally in an encrypted vault: the SID Wallet. Consequently, the SID API server

must be installed and run as a personal gateway for a specific user, and

embed its SID Wallet (see Figure 8). This should not be a big an issue on most

devices, because the server is implemented as a lightweight Jetty container (see

https://www.eclipse.org/jetty/). The usage of the server as a “regular” shared

network service is not supported.

Figure 8 - Deployment of a SID system

https://www.eclipse.org/jetty/

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 28 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

The REST-over-HTTP interface exposed by the API Server is very simple, as it only

provides the means for registering new identities, setting their status (active,

suspended or revoked) and any application-specific additional data (the “ext” field

of the identity record), plus obviously reading back any registered identity record.

The four API calls supported are listed below:

POST /ten/identity – Registers a new identity

GET /ten/identity/{id} – Retrieves the identity corresponding to the “id” resource

PUT /ten/identity/{id} – Sets the status of the “id” identity

PUT /ten/identity/{id}/ext – Sets the “ext” field of the “id” identity

As mentioned above, the API Server is a “personal gateway” that must impersonate

the user when interacting with the SID API on the DLT infrastructure; for this reason,

all the REST calls that require user authentication (basically, POST and PUT methods)

need the caller to provide as additional arguments the password to unlock the SID

Wallet embedded in the API Server and the user identity to be impersonated. This

means that if the API Server is deployed on a remote system (with respect to the

caller), it is of paramount importance that only encrypted HTTPS channels are used.

The four REST API calls are documented in the following figures, which are actually

screenshots of the Swagger web tool installed on an experimental API Server:

Figure 9 - SID REST API: detail of the POST method for registering a new identity

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 29 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Figure 10 - SID REST API: detail of the GET method for retrieving one specific identity

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 30 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

Figure 11 - SID REST API: detail of the PUT method for setting the status of an identity

Figure 12 - SID REST API: detail of the PUT method for setting the “ext” field of an identity

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 31 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

4.2.3.4 SID Wallet command-line tool

To allow users to manage the identity wallet embedded in their personal SID API

server, the SID DApp includes a simple command-line tool. By issuing commands,

the user can insert new identities (which will then need to be registered on the SID

ledger by some controller) in its wallet and browse through its contents.

The CL tool is not interactive: to perform a single operation, it must be launched from

the system with a specific command. The command is structured as follows (it is

assumed that the Java JRE has been configured correctly):

java - jar <path to the executable file>

• -c (mandatory) command: gen, show, list

o gen generate a new identity and store it in the wallet

o show show the details of a given identity (use with -a)

o list list all identities contained in the wallet

• -p (mandatory) password that unlocks the wallet

• -a (mandatory for show command) address of the identity to display

• -h help: list available commands

4.2.3.5 SID availability

The SID smart contract is installed on QU4LITY’s VCL. In order to receive the personal

wallet.zip file that enables client access, developers and integrators should contact

the ENG team that is responsible for QU4LITY’s task T3.6. Any QU4LITY partner is

allowed to experiment online with the DApp, but with the caveat that the VCL is just

a “sandbox” environment: no guarantees are provided by the VCL administrator that

the system will be up 24/7, that data will be persisted for long periods of time and

that security will be properly managed. Under no circumstances should this shared

instance of the DApp be used to store valuable or confidential information or to

manage critical processes. If this is indeed the case, we recommend a dedicated

installation of the SID smart contract on a privately-owned PL.

The source code of the SID DApp, including its REST API, is publicly available on

GitHub: https://github.com/Engineering-Research-and-Development/qu4lity-

dapps/tree/master/sid

https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/sid
https://github.com/Engineering-Research-and-Development/qu4lity-dapps/tree/master/sid

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 32 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

5 Conclusion
This deliverable described the final results of tasks T3.6, providing a summary of the

work done in the initial part of the schedule (up to M12) and the documentation of

the three digital enablers developed during its second part (M13-27).

Task T3.6 delivered a fully-functional DLT infrastructure to support quality

management processes across multi-stakeholder value chains. The decentralized

nature of DApps makes it possible for all participants to collaborate as peers without

any central authority in the role of coordinator and rule enforcer. Such infrastructure

is now available to all QU4LITY partners as a “virtualized” Hyperledger Fabric network

(i.e., a full network where all peer nodes are running on the same Cloud facility)

hosted by ENG and accessible through the public Internet.

All the three DApps released as part of the DLT infrastructure are, generally speaking,

digital enablers of secure state sharing and synchronization of distributed industrial

processes, supporting the traceability of the data and improving access across

different autonomous organizations. That said, one of them – namely, SID – is

actually an “enabler of enablers”: it provides the other two with the capability of

controlling access in a secure way, introducing decentralized identity management

and a solid authentication / authorization mechanism that can be used by

Hyperledger Fabric’s smart contracts instead of the native platform-level security,

which is centralized and much less flexible. SMB is a generic tool for the secure

exchange of trustworthy messages and documents across a business ecosystem. In

the context of the QU4LITY project, SMB will be used in a pilot site to distribute

corrective software updates to a network manufacturing machines, following the

results of quality analysis of finished products. Finally, QCH is a tool for collaborative

quality management – actually, the only one that is designed according to a specific

business process.

In the overall perspective of the QU4LITY project, the QU4LITY DLT infrastructure is

a unique asset, because it opens up a wealth of new possibilities: it is not meant to

optimize existing “centralized” quality management processes, but rather to disrupt

and innovate by introducing trustworthy decentralization.

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 33 of 33

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Permissioned Blockchain for ZDM Date 31/03/2021

Del. Code D3.12 Diss. Level PU

References
[Andrews17] Andrews, Colin, et al. "Utilising financial blockchain technologies in

advanced manufacturing." (2017).

[Kim18] Kim, Henry M., and Marek Laskowski. "Toward an ontology‐driven blockchain

design for supply‐chain provenance." Intelligent Systems in Accounting, Finance and

Management 25.1 (2018): 18-27.

[Ott19] B. Otto et al, “IDS REFERENCE ARCHITECTURE MODEL - INDUSTRIAL DATA

SPACE, version 3.0” 2019. [Online]. Available:

https://www.internationaldataspaces.org/en/ressource-hub/publications-ids

[Uriarte18] Uriarte, Rafael Brundo, Rocco De Nicola, and Kyriakos Kritikos. "Towards

distributed SLA management with smart contracts and blockchain." 2018 IEEE

International Conference on Cloud Computing Technology and Science (CloudCom).

IEEE, 2018.

[Wang17] Wang, Jun, et al. "The outlook of blockchain technology for construction

engineering management." Frontiers of engineering management (2017): 67-75.

