

www.QU4LITY-project.eu
Co-funded by the Horizon 2020 Programme
of the European Union

DIGITAL MANUFACTURING PLATFORMS FOR
CONNECTED SMART FACTORIES

D3.14 Library of Integrated, Interoperable

Digital Enablers (Final Version)

Deliverable Id: D3.14

Deliverable Name: Library of Integrated,

Interoperable Digital Enablers

(Final Version)

Status: Final

Dissemination Level: PU

Due date of deliverable: 30/06/2020

Actual submission date: 30/07/2020

Work Package: WP3

Organization name of

lead contractor for this

deliverable:

INTRASOFT International S.A.

Author(s): John Soldatos, Nikos Kefalakis

Partner(s) contributing: EPFL, TTT, MON, MGEP, ENG,

ATOS, VTT, FHG

Abstract: This deliverable presents the project’s

approach to integrating different enablers, including the

packaging, distribution, and software code management

infrastructures to be used. Moreover, it provides a list of

digital enablers that will make use of these

infrastructures to ease integration and distribution.

Furthermore, the deliverable illustrates the project’s

approach to the interoperability of different automation

platforms and components, including semantic

interoperability.

Ref. Ares(2021)4891706 - 30/07/2021

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 2 of 75

Contents

HISTORY .. 4

Executive Summary ... 5

1 Introduction .. 6

1.1 Scope and Purpose of the Deliverable .. 6

1.2 Relation to Other Deliverables ... 7

1.3 Updates since the last deliverable version... 7

1.4 Deliverable Structure ... 8

2 Packaging & Availability of Standalone & Integrated QU4LITY Digital Enablers . 9

2.1 Packaging & Integration .. 11

2.1.1 Software Packaging with Docker images.. 11

2.1.2 Container Tool with Docker Compose. ... 11

2.1.3 Code Management with GitHub. ... 12

2.1.4 Repository Management with Docker Hub. 12

2.2 Standalone Digital Enablers ... 13

2.2.1 DataCROP DDA Platform ... 13

2.2.2 Data Transformation Platform .. 16

2.2.3 Semi-Supervised Fault Identification ... 21

2.2.4 Edge Computing Enabler ... 22

2.2.5 One-click deployment of a disaggregated 5G cloud-native E2E network

 23

2.2.6 QU4LITY Cloud Bridge ... 26

2.2.7 Q-Ontology Enabler .. 27

2.2.8 VTT OpenVA .. 28

2.2.9 Secure Identity Directory (SID) .. 29

2.2.10 Secure Messaging Board (SMB) .. 31

2.2.11 Quality Clearing House (QCH) .. 32

2.2.12 Security Privacy and Trust Framework .. 33

2.2.13 XL-SIEM .. 34

2.2.14 Anonymization Component .. 37

2.3 Integrated Digital Enablers .. 39

2.3.1 Data Transformation Platform + DataCROP 39

2.3.2 DataCROP + LDM + Fault Identification ... 41

2.3.3 DataCROP + LDM + QARMA Analytics ... 42

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 3 of 75

2.3.4 DataCROP + LDM + Secure Messaging Board (SMB) 44

2.3.5 QU4LITY Ontology + Visual Component Simulation 45

2.3.6 Anomaly Detection for Assembly Process / Shift-In Movement 46

2.4 QU4LITY Open-Source Digital Enablers ... 47

3 QU4LITY Platform Interoperability .. 49

3.1 QU4LITY Common Standards used ... 49

4 QU4LITY Semantic Interoperability ... 52

4.1 QU4LITY Semantic Data Models and Ontologies 52

4.1.1 QU4LITY Semantic Data Models ... 52

4.1.2 QU4LITY Ontologies .. 53

4.1.3 Application of QU4LITY Data Models and Ontologies 55

4.1.4 Semantic Models and Vocabularies implementation 57

4.2 Lightweight Digital Models for ZDM (FAR-EDGE/PROPHESY data model) .. 58

4.3 Lightweight Digital Models ... 58

4.3.1 Description and Usage .. 58

4.3.2 Relation with the Reference Architecture 59

4.3.3 Dependencies .. 59

4.3.4 Availability .. 59

4.3.5 Installation guidelines ... 60

5 Conclusions ... 61

6 References .. 62

List of figures ... 63

List of tables .. 64

List of Abbreviations ... 65

Appendix I – Digital Enablers’ Docker Compose Scripts 66

DataCROP... 66

Cloud Infrastructure ... 70

Appendix II – Native Installation Scripts .. 72

XL-SIEM ... 72

Partners: ... 75

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 4 of 75

HISTORY

Version Date Modification reason Modified by

0.1 17/05/2021
Initial Table of Contents presented to

the involved partners.
INTRA

0.2 31/05/2021 First Draft of contribution EPFL

0.3 31/05/2021 First Draft of contributions TTT

0.4 03/06/2021
Integrated contributions, added

packaging and integration
INTRA

0.5 11/06/2021
Added Cloud Bridge, Q-Ontology,

SID, SMB, QCH Q4LITY enablers
ENG

0.6 11/06/2021 Second version of contributions TTT, FHG

0.7 14/06/2021

Integrated contributions, added

DataCROP and Lightweight Digital

Models

INTRA

0.8 15/06/2021
Added Semi-Supervised Fault

identification digital enabler
MON

0.9 20/06/2021

Integrated contributions, added

Reference Architecture content and

introduction

INTRA

0.10 24/06/2021

Added QU4LITY Ontology + Visual

Component Simulation, common

standards survey

EPFL

0.11 29/06/2021 Added VTT OpenVA, KUBE5G INTRA, VTT, TID

0.12 30/06/2021
Added Data Transformation Platform,

DTP + DataCROP Integration
MGEP

0.13 01/07/2021

Integrated contributions, added

integrated components for

DataCROP, LDM, Fault Identification

and QARMA

INTRA

0.14 16/07/2021 Added SPT and XL-SIEM ATOS

0.15 18/07/2021
Integrated contributions, added

executive summary and conclusions
INTRA

0.16 21/07/2021
Preparation of version of quality

control by QU4LITY partners
INTRA

0.17 28/07/2021 Internal review of the document FHG-ILT

0.18 29/07/2021

Implementation of Revisions

following quality control and reviews;

Preparation of version for delivery to

the Project Coordinator & Submission

INTRA

0.19 /07/2021
Approved and submitted from project

coordinator
ATOS

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 5 of 75

Executive Summary
QU4LITY has specified and implement a novel approach to quality management and

Zero Defects Manufacturing (ZDM), namely an intelligent and Autonomous Quality

(AQ) paradigm. The realization of these paradigm relies on the deployment and usage

of a diverse collection of components which are mapped in different domains of the

QU4LITY reference architecture. To enable the reusability of these components a

packaging & integration methodology have been established which is provided in this

deliverable along with platform and semantic interoperability directions. Moreover, in

this deliverable we list the different WP3 digital enablers most of which are following

the packaging and integration methodology described. Additionally, we provide

examples of integrated digital enablers which are combined to offer a more complete

solution. Several of the digital enablers are also offered as open-source software thru

the Git repository that have been established for the QU4LITY project.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 6 of 75

1 Introduction

1.1 Scope and Purpose of the Deliverable

QU4LITY is developing and validating a pioneering approach to quality management

and Zero-Defect Manufacturing (ZDM), which is characterized by autonomy and

intelligence that minimize manual error prone operations. The project’s approach is

empowered by the notion of a fully digital shopfloor, where digital data and ICT

technologies are exploited to increase the accuracy and proactive of quality

management and ZDM processes. In this direction, WP3 of the project is developing

and validating a set of digital enablers, which empower the transformation of

conventional quality management processes to fully digital processes i.e., processes

that are driven and control in the cyber part of modern Industry 4.0 compliant

factories.

As part of earlier deliverables of WP3, various digital enablers for ZDM have been

specified, designed, and sometimes implemented, including Bigdata platforms,

Machine Learning and AI (Artificial Intelligence) algorithms, Edge/Fog Nodes and

Devices, Blockchain infrastructures for ZDM and more. Each of these enablers is

destined to provide a subset of functionality of the project’s Autonomous Quality (AQ)

system, such as the extraction of knowledge about quality processes, the execution

of automation and control functions close to the field, the sharing of data in secure

and trustworthy ways, and more. However, none of these enablers is enough for

implementing full-fledged, end-to-end AQ solutions in-line with the QUALITY

Reference Architecture (RA). Rather, the implementation of end-to-end solutions

requires the packaging and integration of more than one enabler in a single solution

configuration. In several cases, this packaging may include additional manufacturing

components and applications such as digital simulations or augmented reality

components for human centred manufacturing. Hence, there is a need for an

infrastructure that will facilitate:

• The integration of two or more digital enablers in ZDM/AQ solutions, in ways

that facilitate the deployment, release, packaging and distribution of the

results.

• The interoperability across different modules and platforms that comprise a

ZDM/AQ solution, given that the various components/platforms tend to

produce digital data in different formats and based on different semantics.

The present deliverable is aimed at describing the project’s solution for integration,

packaging, and distribution of QU4LITY’s digital manufacturing solutions, as well as

the project’s approach to the interoperability of different platforms and components.

Specifically, the deliverable presents:

• A library of digital enablers that will following the integration and packaging

principles of the project, including the specified infrastructures and tools. This

library will provide inputs to several other development activities of the project

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 7 of 75

such as the market platform (in WP8) and the pilots that will use enablers

from the library (in WP7).

• The QU4LITY Interoperability concepts and solutions, including (common)

digital models for semantic interoperability of distributed components and

middleware solutions for the syntactic interoperability of diverse platforms.

1.2 Relation to Other Deliverables

The deliverable is closely linked to all the WP3 deliverables that produce digital

enablers for ZDM. These digital enablers will be integrated and packaged following

the guidelines and using the tools established as part of the first version of this

deliverable (D3.13). As such, the deliverable is relevant to the following WP3

deliverables that have been already delivered:

• D3.2 Connectivity Technologies for Autonomous Quality (Final version).

• D3.4 HPC and Cloud Resources for ZDM (Final version).

• D3.6 BigData and Analytics Infrastructure (Final version).

• D3.8 Fog Nodes and Edge Gateways for ZDM deployments (Final version).

• D3.10 QU4LITY SPT Framework (Final version).

• D3.12 Permissioned Blockchain for ZDM (Final version).

Also, the deliverable leverages inputs and results from:

• D2.8 Standards Compliance and Interoperability Specification (Final Version)

Report illustrating standards compliance and interoperability needs.

• D2.10 QU4LITY Digital Models and Vocabularies (Final Version), which

prescribes digital models and vocabularies used in the QU4LITY systems and

pilots. These digital models will also provide a foundation for the project’s

semantic interoperability approach.

• D2.12 Reference Architecture and Blueprints (Final Version), which provides

the overall ZDM system integration concept of the project. The results of the

present deliverable are compatible with D2.12 and support the integration of

solutions in-line with the RA of the project.

1.3 Updates since the last deliverable version

This is the second and final version of the “Library of Integrated, Interoperable Digital

Enablers” deliverable. In this version almost all of the content is new or updated from

the previous one. More specifically the following changes have been performed:

Removed content:

• Packaging & Integration of QU4LITY Digital Enablers section have been mostly

removed. In order to get information for the following subjects please visit

Section 2.1, 2.2 and 2.4 respectively from D3.13.

o Enablers integration concept and elements of the integration solutions

o Integration Requirements with partners preferences on development,

deployment and integration infrastructures.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 8 of 75

o Deployment infrastructure for edge computing

o Deployment infrastructure for DLT Services

Updated, new content:

• Updated the Integration Infrastructure description.

• Updated QU4LITY integration concept.

• A complete update of the list of wp3 standalone digital enablers with a short

description, availability, installation guidelines and relevant documentation.

• Added a list of integrated Digital Enablers with examples of interoperable

enablers their possible usage, integration methodology and installation

guidelines.

• A complete update of the QU4LITY platform interoperability

• A complete update of the QU4LITY semantic interoperability

1.4 Deliverable Structure

The deliverable is structured as follows:

• Section 2 following this introductory section presents the packaging and

availability of standalone and integrated digital enablers along with the

packaging and integration methodology.

• Section 3 provides a description of the project’s platform interoperability

solution focusing on the common services, infrastructures and standards.

• Section 4 focuses on the presentation of the project’s semantic interoperability

solutions based on the semantic digital models that are specified and used in

the project.

• Section 5 is the concluding section of the deliverable.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 9 of 75

2 Packaging & Availability of Standalone & Integrated

QU4LITY Digital Enablers
Deliverable D2.12 presented the last version of the QU4LITY reference architecture

(QU4LITY-RA), which is also illustrated in Figure 1 below. This architecture provides

a high-level blueprint for the integration of different solutions, over digital

infrastructures. The integration approach of the project does not pose any restriction

regarding the integration of different components based on the RA. Specifically, the

QU4LITY software packaging and integration approach will leverage OS-level

virtualization to deliver different software modules in the form of packages

(“containers”). Individual QU4LITY components will be therefore isolated from one

another within specific containers, each one bundling their own software, libraries

and configuration files.

Using the proposed infrastructure, any set of QU4LITY modules can communicate

with each other through well-defined channels and without restrictions. As such the

integration infrastructure and tools of the previous paragraphs provide flexibility in

integrating different modules in the scope of industrial use cases.

Figure 1 QU4LITY Reference Architecture (Q-RA) (D2.12)

In Table 1 below we can see an overview of the different digital enablers offered in

the context of WP3 along with their QU4LITY Reference Architecture Mapping.

Component Name Owner Task QU4LITY RA

Mapping

License

One-click deployment of

a disaggregated 5G

cloud-native E2E

network

TID T3.1 Corporate/Plant IT

Service Network

Apache-2.0

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 10 of 75

Component Name Owner Task QU4LITY RA

Mapping

License

TSN fieldbus network CEA T3.1 Field and Proximity

Network

SaaS/

Proprietary

Visual quality control

Training-aaS on HPC

JSI T3.2 Data Lake / Big Data

Analytics

Infrastructure

Open

Source

QU4LITY Cloud

Infrastructure

ENG T3.2 Cloud AGPL-3.0

Q-Ontology Enabler ENG T3.2 Cloud Open

Source

DataCrop DDA Platform INTRA T3.3 Data-driven Modelling

and Learning Services

Apache-2.0

Data Driven RUL

Calculation

ATLAS T3.3 Data-driven Modelling

and Learning Services

Proprietary

Model Driven RUL

Calculation

ATLAS T3.3 Data-driven Modelling

and Learning Services

Proprietary

Quantitative Association

Rule Mining (QARMA)

INTRA T3.3 Data-driven Modelling

and Learning Services

Proprietary

Anomaly Detection for

Quality Control

TNO T3.3 Data-driven Modelling

and Learning Services

Proprietary

Analytics for In-Line

Sensor Data

Visualization

FHG-

IGD

T3.3 Data-driven Modelling

and Learning Services

Proprietary

Image analyzer for

surface inspection

FHG-

ILT

T3.3 Data-driven Modelling

and Learning Services

TBD

Improved Failure

Classification Enabler

TUDO T3.3 Data-driven Modelling

and Learning Services

Proprietary

OpenVA VTT T3.3 Simulation and

Human-centric

Visualization Srv.

BSD/

Proprietary

Fault Identification MGEP T3.3 AI and Big Data Proprietary

Nerve Blue TTT T3.4 Access & Smart

Products

Proprietary

Savvy Smart Box IDEKO T3.4 Access & Smart

Products

Proprietary

FOOTPRINT UNP T3.4 Access & Smart

Products

TBD

Security Privacy and

Trust Framework

ATOS T3.5 Distributed

Trustworthiness

Middleware

TBD

XL-SIEM ATOS T3.5 Distributed

Trustworthiness

Middleware

GPL/

Proprietary

Context Awareness

Framework

ATB T3.5 Converters for

Interoperability

Proprietary

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 11 of 75

Component Name Owner Task QU4LITY RA

Mapping

License

MASAI ATOS T3.5 Converters for

Interoperability

TBD

Data Transformation

Platform

MGEP T3.5 AI and Big Data MIT

DApp: Secure Identity

Directory (SID)

ENG T3.6 Value Chain Ledger

Private Ledger

Apache-2.0

DApp: Secure Messaging

Board (SMB)

ENG T3.6 Value Chain Ledger

Private Ledger

Apache-2.0

DApp: Quality Clearing

House (QCH)

ENG T3.6 Value Chain Ledger Apache-2.0

Table 1 List of the QU4LITY digital enablers

The following sections provides an overview of the proposed packaging and

integration solution along with the list of QU4LITY digital enablers in standalone and

integrated interoperable flavours that are offering it. A short description of the digital

enablers/integrated solutions is provided along with their reference architecture

placement, their availability and installation instructions where available.

2.1 Packaging & Integration

In this section you can find an overview of the packaging and integration plan

identified in the first version of this deliverable (D3.13) mand more specifically in

section 2.3.

2.1.1 Software Packaging with Docker images.

The preferred packaging methodology is Docker containers which are used, in most

of the cases, to package and distribute the different Digital Enablers. Docker is an

open platform for developing, shipping, and running applications. With Docker, an

infrastructure can be managed in the same way’s applications are managed. Docker

[1] offers shipping, testing, and deploying methodologies easily and quickly, where

time between writing code and running it in production can be significantly reduced.

2.1.2 Container Tool with Docker Compose.

As briefly mentioned above Docker Compose is a tool for defining and running multi-

container Docker applications. It uses YAML files to configure the application's

services and performs the creation and start-up process of all the containers with a

single command. The docker-compose.yml file is used to define an application's

services and includes configuration options. In quality as the preferred container

runtime management method was Docker Compose every digital enabler will be

accompanied by a docker-compose.yml file which will facilitate its installation.

Additionally, different collections of interoperable digital enablers that will be used as

solutions for the QU4LITY use cases will be provided as ready to install docker-

compose.yml files.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 12 of 75

Information on how to edit a docker-compose.yml file can be found at Docker Docs

[1] and more specifically at the Get started with Docker Compose1

2.1.3 Code Management with GitHub.

The Open Source (OS) Digital Enablers source code is offered thru GitHub2 repository.

A QU4LITY organization has been set up at GitHub3 where every OS Digital Enabler

which is developed within the context of QU4LITY project can have its own repository.

Guidelines on how to use GitHub can be found in the GitHub Guides4 and more

specifically for a beginner the Hello World guide5 could be used.

In most of the cases the different Digital Enablers had already existing code

repositories (available in other GitHub branches). In that cases repository mirroring

mechanisms have been employed to ensure access to the components from the

project’s GitHub. Mirroring6 a repository from another location enables the user to

maintain an updated copy of the active workspace including getting updates from the

original. Mirroring can be performed periodically in order to push any updates from

the mirrored repository.

To generate a new repository under the QU4LITY organization a Digital Enabler owner

should contact Mr. Nikos Kefalakis7 with their GitHub username (or list of user names

if they wish to generate a dedicated team for their organization) and the name of the

repository(s) to be generated in order to become their Administrators (level Admin),

Maintainers (level Maintain) or Authors(level Write) depending on the team

organization.

2.1.4 Repository Management with Docker Hub.

The Open Source (OS) Digital Enablers containers can be hosted in Docker Hub8. A

QU4LITY organization has been set up at Docker Hub9 where every OS Digital Enabler

which is developed within the context of QU4LITY project can have its own repository.

To generate a new artifact repository under the QU4LITY organization a Digital

Enabler owner should contact Mr. Nikos Kefalakis10 with their Docker Hub username

(or list of usernames if they wish to generate a dedicated team for their organization)

and the name of the repository(s) to be generated in order to become their

Administrators (level Admin) or Authors (level Read-Write) depending on the team

organization.

1 https://docs.docker.com/compose/gettingstarted/
2 https://github.com/
3 https://github.com/qu4lity
4 https://guides.github.com/
5 https://guides.github.com/activities/hello-world/
6 https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-
on-github/duplicating-a-repository#mirroring-a-repository-in-another-location
7 Nikos.KEFALAKIS@intrasoft-intl.com
8 https://hub.docker.com/
9 https://hub.docker.com/orgs/qu4lity
10 Nikos.KEFALAKIS@intrasoft-intl.com

https://github.com/
https://github.com/qu4lity
https://guides.github.com/
https://guides.github.com/activities/hello-world/
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/duplicating-a-repository#mirroring-a-repository-in-another-location
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/duplicating-a-repository#mirroring-a-repository-in-another-location
mailto:Nikos.KEFALAKIS@intrasoft-intl.com
https://hub.docker.com/
https://hub.docker.com/orgs/qu4lity
mailto:Nikos.KEFALAKIS@intrasoft-intl.com

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 13 of 75

2.2 Standalone Digital Enablers

2.2.1 DataCROP DDA Platform

2.2.1.1 Description and Usage

The DataCROP (Data Collection Routing & Processing) platform, initially developed in

the H2020 FAR-EDGE & PROPHESY projects, is an IoT platform which enables the

collection, routing, pre-processing and annotation of collected data to facilitate the

configuration and management of analytics algorithms. DataCROP supports multiple

Edge Gateways for local data collection, manipulation and processing and a cloud tier

for global data manipulation and processing for data coming from the different Edge

Gateways to provide more complex and consolidated analytics from the whole

infrastructure (multiple Edge Gateways).

A lightweight version of the DataCROP solution (single Edge Gateway) have been

used in the RiaStone pilot which was deployed to facilitate the QARMA4Industy

algorithm for estimating RUL. More details on the DataCROP platform can be found

in section 3.1 of QU4LITY deliverable D3.6 “BigData and Analytics Infrastructure

(Final Version)”.

2.2.1.2 Relation with the Reference Architecture

As mentioned in D2.12 the DataCROP analytics management platform is placed at

the “AI and Big Data” layer (see Figure 1 above) based on its cross-cutting functions

associated with data routing and industrial analysis.

2.2.1.3 Dependencies

DataCROP platform has the following environment and software dependencies:

• Confluent Platform >= 4.1.1

• MongoDB >= 3.6.4

• Node.js >= 10.1.0

• npm >= 5.6.0

2.2.1.4 Availability

DataCROP is an Open-Source software and is offered both as source code at GitHub11

but as well as a containerized solution at Docker Hub12. In the following two sub-

sections, we provide details for this availability.

2.2.1.4.1 GitHub Distribution

DataCROP source code is offered under the Apache License 2.0 and its components

are available from GitHub13. DataCROP is consisted of the following components:

11 https://github.com/qu4lity/data-crop
12 https://hub.docker.com/u/faredge
13 https://github.com/qu4lity/data-crop

https://github.com/qu4lity/data-crop
https://hub.docker.com/u/faredge
https://github.com/qu4lity/data-crop

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 14 of 75

• Open API for Analytics

• Edge Analytics Engine

• Model Repository

• Digital Models

• Analytics Processors

• Analytics Dashboard

• MQTT Data Publishers

o File

o Random Data

2.2.1.4.2 Docker Distribution

DataCROP dockerized components are offered thru Docker Hub and various

deployment options are also available by offering the equivalent YAML files for Docker

Compose and Docker Swarm.

DataCROP Docker Hub availability is provided below:

• Open API for Analytics:

o https://hub.docker.com/repository/docker/faredge/open-api-for-

analytics

• Edge Analytics Engine:

o https://hub.docker.com/repository/docker/faredge/edge-analytics-

engine

• Analytics Dashboard:

o https://hub.docker.com/repository/docker/faredge/analytics-

dashboard

• Model Repository

o https://hub.docker.com/repository/docker/faredge/model-repository

• MQTT Data Publishers:

o Publish data from File:

▪ https://hub.docker.com/repository/docker/faredge/mqtt-file-

data-publisher

o Publish Random Data:

▪ https://hub.docker.com/repository/docker/faredge/mqtt-

random-data-publisher

2.2.1.5 Installation guidelines

The core infrastructure of DataCROP is deployed effortlessly by taking advantage of

the facilities offered by Docker. The platform deployment scripts can be found on

GitLab14.

For a test deployment the following scripts and sample data are offered:

• INSTRUCTIONS.md: a text file containing instructions on how to deploy the

platform

14 https://github.com/qu4lity/data-crop

https://github.com/qu4lity/data-crop

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 15 of 75

• test.yml: a YAML file containing the configurations of the various Docker

containers (Docker images, environment variables, networking, data volumes

configuration etc.) see Table 2 in Appendix I – Digital Enablers’ Docker

Compose Scripts below.

• processors: a folder containing sample algorithms imitating the ML toolkit’s

algorithms behavior.

• data: folder containing sample data to prepopulate the databases with for

demonstration purposes

By following the instructions, one may both deploy and undeploy the various

components DataCROP infrastructure. To do so, Docker Compose is being used.

Compose is a tool for defining and running multi-container Docker applications. A

YAML file is being employed to configure all application’s services. Then, with a single

command, one may create and start all the services from the aforementioned

configuration15.

Start Everything.

Run the following command.

docker-compose -f test.yml -p test up -d

Deployment Test.

Run the following command.

docker ps --filter name=test --format "table {{.Image}}\t{{.Names}}"

Stop Everything.

Run the following command.

docker-compose -f test.yml -p test down

Clean Everything.

Run the following command. (**at your own risk**).

docker system prune --volumes

Please note that this command erases all the unused system volume so execute it

only if you are sure useful system volumes are not going to be deleted.

15 https://docs.docker.com/compose/

about:blank

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 16 of 75

2.2.2 Data Transformation Platform

2.2.2.1 Description and Usage

The Data Transformation Platform consist of several components/servers that allow

the construction of converters for interoperability. These converters for

interoperability are software artifacts that enable syntactic interoperability between

heterogeneous systems by means of protocol and data format translation. The digital

enabler offered in this deliverable is an infrastructure solution compose of three

servers. In addition, two APIs converters are provided as an example on the usage

of the infrastructure.

The infrastructure of the data transformation platform consists of a Docker solution

with three servers:

1. An Enterprise Service Bus (ESB) server that enables the deployment of

software artifacts for the conversion of data between APIs, IoT gateways and

platforms. The solution proposes the usage of WSO2 (Web Services

Oxygenated 2).

2. An edge broker server for message publication and subscription. This broker

enables event driven architectures for the converters that need to integrate

APIs that need such infrastructure. The solution proposes the usage of

RabbitMQ.

3. A Node-RED server is also provided. Node-RED has similar integration

capabilities to those of WSO2 but presents a much more user-friendly

interface (visual representation) with a Web browser and enables the

integration with OT technology such as OPC-UA.

The Data Transformation Platform is used in the Mondragon pilot which along the

MongoDB repository presented in section 2.3.1, enables the construction of a

messaging architecture to collect information from assets. In addition, APIs are

offered to consume data stored in the repository. More details on the Data

Transformation Platform can be found in Deliverable D5.7 “QU4LITY Digital Platforms

Open APIs”.

2.2.2.2 Relation with the Reference Architecture

The Data Transformation Platform is placed at the “IoT Hub/Data Lake” to support

the “AI and Big Data” layer (see Figure 1 above) based on its cross-cutting functions

associated with the interoperability assurance layer.

2.2.2.3 Dependencies

Data Transformation Platform has the following environment and software

dependencies:

• WSO2 Integrator >= 6.5.0

• RabbitMQ >= 3.8.17

• Node-RED >= 1.3.5

• Node.js >= 12.22.1

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 17 of 75

2.2.2.4 Availability

This digital enabler is Open Source software under MIT license and is offered as a

containerized solution at GitHub. In the following sub-section, we provide details for

its availability.

2.2.2.4.1 GitHub Distribution

The components for this enabler are images available in Docker Hub and the

containerized solution is available from GitHub. Links to the relevant repositories are

provided below:

• Data Transformation Platform

o https://github.com/qu4lity/data-transformation-platform

2.2.2.5 Installation guidelines

The core infrastructure of the Data Transformation Platform is deployed effortlessly

by taking advantage of the facilities offered by Docker. The platform deployment

scripts can be found on GitHub16.

For a test deployment the following scripts and sample data are offered:

• README.md: a text file containing instructions on how to deploy the platform

• Docker-compose.yml: a YAML file containing the configurations of the

various Docker containers (Docker images, environment variables,

networking, data volumes configuration etc.).

• node-red: a folder holding Node-RED’s Dockerfile and the flows provided as

examples that offer an endpoint by means of a REST API, collect the data

provided by the API consumer and sends the data through the edge broker.

See section 2.2.2.6 for more detail.

• wso2: a folder holding the data converters constructed with WSO2 as an

example. See section 2.2.2.6 for more detail.

By following the instructions given in the README file, one may both deploy and

undeploy the various components of the integrated Digital Enabler. To do so, Docker

Compose is being used. Compose is a tool for defining and running multi-container

Docker applications. A YAML file is being employed to configure all application’s

services. Then, with a single command, one may create and start all the services

from the aforementioned configuration17.

2.2.2.6 Documentation

Two converters are provided along the digital enabler to show the capabilities of the

solution.

The first is a converter for WSO2 Integrator built with the Eclipse plugging Integration

Studio. In this example we simulate a system that offers an endpoint that consumes

XML messages. For that we provide a Node-RED flow endpoint called

16 https://github.com/qu4lity/data-transformation-platform
17 https://docs.docker.com/compose/

https://github.com/qu4lity/data-transformation-platform
about:blank

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 18 of 75

ServiceProviderXML and offered at http://node-red:1880/sensorMeasurement. The

XML messages accepted by this endpoint hold the information shown in Figure 2.

Figure 2 Valid XML message for endpoint

We also simulate a consumer for that service that only produces JSON messages or

documents with the format shown in Figure 3.

Figure 3 JSON messages format for endpoint client

A converter that converts those JSON messages into XML messages, invokes the

original endpoint, and returns the response is provided in this example. The converter

is an API built using Eclipse Integrator Studio. The API is shown in Figure 4. The API

is offered as endpoint at:

“http://wso2:8280/Measureconvertor/convertorAPINext” a transformation from the

XML message to a JSON message is performed using the Data Mapper. Finally, the

Node-RED endpoint is invoked by posting the translated XML message. The response

is returned to the API consumer once received by the converter.

Figure 4 WSO2 Converter API

http://node-red:1880/sensorMeasurement

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 19 of 75

The message transformation is performed in this case by the Data Mapper component

(see Figure 5). This component enables schema import for input and output and a

graphical interface to map attributes in the messages.

Figure 5 Data Mapper

Additionally, the example offers a Node-RED flow that acts as the API consumer. The

flow is called ServiceConsumerJSON.

To run this example the Docker containers provided in GitHub have to be run and the

Inject node from the ServiceConsumerJSON activated.

The second converter is built with Node-RED. In this example we simulate a situation

where a message with three arrays of 300 elements each is converted in 300

messages each holding the sampleID, the frequency phase and the amplitude of a

given sample. Those messages are published in a message broker. The example

provides a Node-RED flow that is subscribed to the broker to collect those messages.

The input message is shown in Figure 6. The figure is trunk presenting only some

amplitude values. SampleId, frequency and amplitude arrays hold 300 values each.

A position in each array determines a sample for the signal represented. Additionally,

the message presents information about the asset and the starting timestamp.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 20 of 75

Figure 6 Input Message

The output of the converter are 300 messages. One for each sample. Figure 7

presents one of those samples.

Figure 7 Output Sample Message

The converter is the Node-RED flow called Sampling Example shown in Figure 8. The

converter offers an endpoint at http://node-red:1880/sampling. The converter After

that it divides the arrays and combines the elements in single messages that are

published in the qu4lity node (RabbitMQ).

http://node-red:1880/sampling

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 21 of 75

Figure 8 Sampling Converter in Node-RED

In order to test it, an additional tab contains a client that consumes the sampling

converter endpoint. Moreover, it contains a flow that consumes and prints AMQP

messages.

2.2.3 Semi-Supervised Fault Identification

2.2.3.1 Description and Usage

The Fault Identification asset is an algorithm for detecting anomalies in time-

series. This algorithm is called NullSpace. In D3.6 more information about this

algorithm can be found. In quality prediction, when there is no labelled data,

changes in the process may show that the quality of the product is not suitable.

Since the emerging solutions for zero waste manufacturing are starting to be

online, the lack of labelled data is a problem. But the fact that usually, the

manufacturing industries are good at manufacturing the parts, usually, there are

tons of data that resemble the correct behaviour of the process. Semi-Supervised

learning can be used to model a normality and be able to detect when something

stands out from this normality.

While supervised learning has labels to train with for all the working scenarios, Semi-

Supervised learning, is only trained with one of these labels. Semi-supervised

learning is trained using only information from one of the classes, correct operation

class in our case. This fact is also known as one-class classification. This enabler

makes the semi-supervised process available.

2.2.3.2 Relation with the Reference Architecture

As mentioned in D3.6 the Fault Identification enabler is placed at the “AI and Big

Data” layer (see Figure 1 above. Moreover, it is integrated in the DataCrop platform,

but due to the proprietary nature of the enabler, it is not delivered with the DataCrop

platform itself.

2.2.3.3 Dependencies

Semi-Supervised Fault identification platform has the following environment and

software dependencies:

• python >= 3.6

• Conda >= 4.4

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 22 of 75

• scipy >= 1.4

• Numpy >= 1.9

• FastAPI >=0.62

• Uvicorn >= 0.12

2.2.3.4 Availability

The code of this solution is proprietary, so it is not publicly available. Contact

Mondragon University for more information.

2.2.3.5 Installation guidelines

All the dependencies are fulfilled within miniconda docker file so run the following

command.

docker pull continuumio/miniconda3

FastAPI and Uvicorn are not installed within this docker container, so you need to

install those dependencies into this docker.

Pip install fastapi

Pip install uvicorn[standard]

Using this command every dependency is fulfilled. Meaning, that once you get the

code, you can run the system. This system enables a web framework built with

fastAPI. To run the application run the following command.

uvicorn faultID:app --reload

With this command you build the application which can make predictions for fault

identification.

2.2.4 Edge Computing Enabler

2.2.4.1 Description and Usage

The edge computing enabler provides the possibility to host applications at the edge

of the network (i.e., direct at the machine) and perform (potentially in real time)

operations using the data directly from the machine. The advantage of using edge

computing at the machine is that you have direct access to the data and can

potentially also (in real-time) provide data to the machine back and control the

actuators on the machine. The latency of sending data into the cloud is not applicable

here.

2.2.4.2 Relation with the Reference Architecture

This enabler forms the basis of the Edge/Fog part of the QU4LITY Reference

Architecture. It has a close connection with all the other layers in the reference

architecture, especially with the communication part and the Automation

Manufacturing Platforms & Service Operations, as many of the enablers coming from

this part can be hosted (partly) on the edge, enabling it directly to be close to the

machines and thus to the data. Dependent on the applications hosted on the edge,

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 23 of 75

the data is received from specific sensors on the machines and application specific

data is returned either directly to the actuators of the machine or the other

applications.

2.2.4.3 Dependencies

There aren’t explicit dependencies on the edge computing enablers. It depends on

the interfaces that are available on the edge solutions and the internal software that

is running on the edge.

2.2.4.4 Availability

A free trial of the TIAG edge device, Nerve Blue, can be acquired from the product

website18.

2.2.4.5 Installation guidelines

A quick start guide and documentation regarding Nerve Blue can be found on the

following nerve website19

2.2.4.6 Documentation

More details about the usage of the edge devices are introduced in WP3 deliverable

D3.8 with applications deployed to the edge devices in multiple pilots and

experimental facilities.

2.2.5 One-click deployment of a disaggregated 5G cloud-native E2E

network

2.2.5.1 Description and Usage

One-click deployment of a disaggregated 5G cloud-native E2E network is used for

bootstraping K8s automatically on top of Ubuntu 18.04 LTS VMs in order to quickly

get a telco K8s-learning playground.

2.2.5.2 Relation with the Reference Architecture

One-click deployment of a disaggregated 5G cloud-native E2E network is placed at

the “Corporate/Plant IT Service Network” layer (see Figure 1 above) based on the

network infrastructure it provides in order to facilitate other QU4LITY digital enablers

deployments.

2.2.5.3 Dependencies

One-click deployment of a disaggregated 5G cloud-native E2E network core

dependencies are:

• Ansible

• Kubernetes

18 https://www.tttech-industrial.com/products/nerve/free-trial/
19 https://docs.nerve.cloud/

https://www.tttech-industrial.com/products/nerve/free-trial/
https://docs.nerve.cloud/

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 24 of 75

• terraform

2.2.5.4 Availability

One-click deployment of a disaggregated 5G cloud-native E2E network is available

on QU4LITY Github20 as an open-source project.

2.2.5.5 Installation guidelines

Repo Structure

• vmtools: A bunch of VM management helper scripts used to bootstrap the

virtual infra in KVM

• ansible: Ansible playoboks to automate the deployment of K8s

• pac: Pipelines for deployment automation, specific to each project using this

repo (eg. 5glab)

• terraform: Preliminary support for deployment in OpenNebula VMs

• docs: Miscallaneous documentation regarding networking, load balancer and

storage topics

Getting Started

KVM Host networking setup

The kvm.yaml playbook supports setting up the networking infrastructure of a KVM

host with the bridging necessary for supporting Intel Multus later in the bootstrap

playbook.

Remember to configure bridge_name, bridge_gw and bridge_ip ansible variables

within inventory file before provisioning the network setup on the baremetal machine.

As with the bootstrap playbook, setting up inventory is needed prior to running the

playbook.

ansible-playbook -i inventory kvm.yaml

This kvm.yaml playbook will install the minimum necessary packages and runs the

role kvmhost that prepares the pipes on the server (bridge, and libvirt interfaces) in

order to launch the cluster. The machine will reboot and then you are ready to initiate

the K8s cluster bootstrap setup.

Installing K8s

vmtools/vminstall is a quick way to generate a minimum KVM image that can act as

worker and master. See vmtools/README.md to check all details about the tools to

manage VMs.

Example:

vminstall base

20 https://github.com/qu4lity/tid-kube5g

https://github.com/qu4lity/tid-kube5g

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 25 of 75

will generate a qcow image named base, this image can be later cloned with following

commands:

vmclone k8s base

vmclone k8sworker1 base

These VMs can be later provisioned with the minimal necessary to run K8s:

ansible/bootstrap.yml is the ansible-playbook that gets you most of what you need

to set up a minimal environment to start playing with k8s.

Important Note: The qcow image (e.g. base) has associated an xml file with the

definition associated to the VM when provisioning that image. For kubertelconetes

virtual environment we recommend to add two interfaces: one macvtap interface and

one interface of type network. This can be done by editing the xml file of the base

image. Example: virsh edit --domain base

At the network-side of the VM config we mapped one macvtap interface:

<interface type='direct' trustGuestRxFilters='yes'>

 <mac address='52:54:00:25:30:3b'/>

 <source dev='5gnow' mode='bridge'/>

 <model type='virtio'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00'

function='0x0'/>

 </interface>

And we include one additional interface for external k8s networks:

<interface type='network'>

 <mac address='52:54:00:81:77:68'/>

 <source network='5gphysical'/>

 <model type='virtio'/>

 <address type='pci' domain='0x0000' bus='0x09' slot='0x00'

function='0x0'/>

</interface>

Prior to run the playbook, the inventory file must be adapted to the needs of the

particular deployment. An example is provided at hosts.example file, and basically it

works as a feature toggle interface, where the machines to be deployed must be

defined in the target group, and any feature specific must be enabled per host. Below

the target group lies the general variables that control the features for all hosts

defined above, so a sane set of defaults is provided.

To bootstrap the kubertelconetes cluster (intel-multus+flannel):

ansible-playbook -i inventory bootstrap.yaml

2.2.5.6 Documentation

One-click deployment of a disaggregated 5G cloud-native E2E network software

additional documentation and examples are available on QU4LITY Github21

21 https://github.com/qu4lity/tid-kube5g/tree/main/docs

https://github.com/qu4lity/tid-kube5g/tree/main/docs

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 26 of 75

2.2.6 QU4LITY Cloud Bridge

2.2.6.1 Description and Usage

QU4LITY Cloud Bridge provides a seamless solution to exchange data using the

QU4LITY Ontology Model (based on R-MPFQ developed in WP2), enabling a semantic

enriched data exchange from on-premises data lakes to QU4LITY Cloud Data Storage

using a time-based approach. Furthermore, as part of the realization process of the

QU4LITY Cloud Bridge, ENG has been in charge of the transposition of the QU4LITY

ontology (based on R-MPFQ model defined by EPFL) into a relational database (for

better integration with analytics and visualization components). by delivering one

more QU4LITY Digital Enabler, the so-called Q-Ontology Enabler, further described

in the following Section 2.1.10.

QU4LITY Cloud Bridge is a node.js application that offers a REST API layer to ease

the interfaces with other processing and visualization components pilot taking care

of any data decoding/encoding needs (i.e. IEEE754 data encoding).

2.2.6.2 Relation with the Reference Architecture

QU4LITY Cloud Bridge provides solutions to implement the Cloud Platform in the

Whirlpool pilot (even if the implemented solutions are reusable in other pilots and

business cases as well) to ease data storing and accessing, can be mapped towards

“Cloud” box (see Figure 1 above) of the Q-RA.

2.2.6.3 Dependencies

QU4LITY Cloud Infrastructure relies on the following tools/software:

• Node.js >= 14.17

• Express.js >= 4.17.1

• npm >= 6.14.13

• MariaDB >= 10.5.10

• Nginx >= 1.20.1

• Sequelize >= 6.3.5

2.2.6.4 Availability

QU4LITY Cloud Bridge is an Open-Source software and is offered both as source code

and a ready-to-be-containerized solution at GitHub. In the following sub-sections, we

provide details for this availability.

2.2.6.5 GitHub Distribution

QU4LITY Cloud Bridge source code is offered under the GNU Affero General Public

License v3.0 and it’s available on GitHub repository22

22 https://github.com/Engineering-Research-and-Development/qu4lity-cloud-bridge

https://github.com/Engineering-Research-and-Development/qu4lity-cloud-bridge

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 27 of 75

2.2.6.6 Installation guidelines

QU4LITY Cloud Bridge can be deployed effortlessly by taking advantage of the

facilities offered by Docker as well as installed locally with the help of node.js. The

platform deployment scripts can be found on GitHub.

For a test deployment the following scripts and sample data are offered:

1. README.md: a text file containing instructions on how to install/deploy the

platform as well as a list of all the REST API offered by the infrastructure;

2. docker-compose.yml: a YAML file containing the configurations of the various

Docker containers (Docker images, environment variables, networking, data

volumes configuration etc.) see Table 3 in Appendix I – Digital Enablers’

Docker Compose Scripts below.

3. nginx_conf: a folder containing a sample configuration for nginx

4. mariadb_conf: folder containing all the .sql import scripts needed to

prepopulate the databases with for demonstration purposes.

2.2.6.7 Documentation

An API Documentation for QU4LITY Cloud Bridge is provided, as Postman Collection,

on GitHub23

2.2.7 Q-Ontology Enabler

2.2.7.1 Description and Usage

Q-Ontology Enabler is a set a python scripts which ease the migration to the QU4LITY

relational database performing a ETL processes on existing on-premises

infrastructures. The relational transposition of R-MPFQ model does not represent a

new MES, but a way to organize in the most logical and structured way possible a

varied reality although it may become that one day in the future.

2.2.7.2 Relation with the Reference Architecture

Q-Ontology Enabler, being a complementary tool for the QU4LITY Cloud Bridge, can

be also mapped towards “Cloud” box (see Figure 1 above) of the Q-RA.

2.2.7.3 Dependencies

Q-Ontology Enabler relies on the following software:

• Python >= 3.9.0

2.2.7.4 Availability

Q-Ontology Enabler is an Open Source collection of python scripts which are offered

as migration solution towards R-MPFQ Ontology at GitHub. In the following sub-

section, we provide details for this availability.

23 https://github.com/Engineering-Research-and-Development/qu4lity-cloud-bridge/tree/master/docs

https://github.com/Engineering-Research-and-Development/qu4lity-cloud-bridge/tree/master/docs

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 28 of 75

2.2.7.4.1 GitHub Distribution

Q-Ontology Enabler source code is offered under the GNU Affero General Public

License v3.0 and it’s available on GitHub repository24

2.2.7.5 Installation guidelines

Q-Ontology Enabler doesn’t require any particular installation apart from Python

interpreter.

2.2.7.6 Documentation

Q-Ontology Enabler scripts need just to be executed under Python interpreter. Each

Q-Ontology Enabler requires a data source in .csv format that must reside on the

same root folder as the script being executed.

2.2.8 VTT OpenVA

2.2.8.1 Description and Usage

VTT OpenVA platform consist of software components that are used as building blocks

of visual analytics tools:

• A database that stores the application data in a standard domain independent

form

• An extendable analysis and visualization library providing a selection of

analysis and visualization methods. The library is customized based on

application needs

• Embedded R statistical computing environment

• A web user interface where the user can select variables for analysis and

explore the data with the help of visualizations. The visualizations can be in

2D or 3D and interconnected with real object visualizations. The user interface

suggests the user the appropriate analysis methods letting them to

concentrate on the substance instead of data analysis methods.

VTT OpenVA is independent of the underlying data collection solution. The data can

come from several sources, also in real-time. The data to be analysed is loaded from

the sources to the database through a uniform data interface.

2.2.8.2 Relation with the Reference Architecture

VTT OpenVA Digital Enabler is placed at the “Simulation and Human-centric

Visualization Srv.” layer (see Figure 1 above) based on its visual analytics tools

functionality.

2.2.8.3 Dependencies

Some of the core dependencies of OpenVA are:

• Apache Tomcat

• PostgreSQL

24 https://github.com/qu4lity/q-ontology-enabler

https://github.com/qu4lity/q-ontology-enabler

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 29 of 75

• Spring Framework

2.2.8.4 Availability

VTT OpenVA is an Open-Source software and is offered both as source code at GitHub

but as well as a containerized solution at Docker Hub.

• There is a clone repository under QU4LITY GitHub25

• There are two Docker images in Docker Hub:

o pekkasiltanen/openvaplusr, that contains VTT OpenVA jar-file and R

with the libraries used in the visualizations and

o pekkasiltanen/postgresopenva, that contains PostgreSQL database

with example data.

2.2.8.5 Installation guidelines

Detailed installation and demonstration guidelines are provided under the VTT

OpenVA’s wiki page on GitHub26

2.2.8.6 Documentation

Detailed documentation is provided under the VTT OpenVA’s wiki page on GitHub27

2.2.9 Secure Identity Directory (SID)

2.2.9.1 Description and Usage

Secure Identity Directory (SID) is a decentralized infrastructure for identity

management. It answers the problem of how a decentralized application may depend

on common, trustworthy information about user identities without introducing any

centralization bottleneck. Therefore, SID is centred on a smart contract that can be

deployed either on the QU4LITY Value Chain Ledger (VCL) or on any Private Ledger

(PL). User and machine identities are registered on the ledger in a format that is

compatible with the DID standard (see next section) but also contains a rich (and

extensible) set of information. This decentralized registry of identity descriptors

allows any DApp that supports SID (including SID itself, as will be explained later) to

assess the identity of their users in a secure way and, optionally, to enforce access

restrictions according to their own policies.

The SID smart contract is installed on QU4LITY’s VCL. However, The SID API is not

exposed directly by the smart contract. Instead, a REST-over-HTTP interface is

provided by a “SID API server” that acts as a mediator between the caller and the

smart contract. The SID API server must impersonate the caller and forward every

call to the smart contract, taking full responsibility for authentication. To do that, the

SID API server needs full access to the private credentials of the user, which are kept

locally in an encrypted vault: the SID Wallet. Consequently, the SID API server must

25 https://github.com/qu4lity/vttopenva
26 https://github.com/pekka-siltanen/vttopenva/wiki/Docker-demo
27 https://github.com/pekka-siltanen/vttopenva/wiki

https://github.com/qu4lity/vttopenva
https://github.com/pekka-siltanen/vttopenva/wiki/Docker-demo
https://github.com/pekka-siltanen/vttopenva/wiki

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 30 of 75

be installed and run as a personal gateway for a specific user and embed its SID

Wallet. The usage of the server as a “regular” shared network service is not

supported.

To allow users to manage the SID Wallet embedded in their personal API server, the

SID DApp includes a simple command-line tool. By issuing commands, the user can

insert new identities (which will then need to be registered on the SID ledger by some

controller) in its wallet and browse through its contents.

2.2.9.2 Relation with the Reference Architecture

SID is a Distributed Application (DApp), the smart contract of which can be deployed

on either the Value Chain Ledger (VCL) or any Private Ledger (PL).

2.2.9.3 Dependencies

No dependencies.

2.2.9.4 Availability

Any QU4LITY partner is allowed to experiment online with the SID DApp, but with

the caveat that the VCL is just a “sandbox” environment: no guarantees are provided

by the VCL administrator that the system will be up 24/7, that data will be persisted

for long periods of time and that security will be properly managed.

A standalone deployment may also be done on any Private Ledger – refer to the

installation guidelines below.

2.2.9.5 Installation guidelines

To use the VCL instance of the SID, both the command-line tool and the API server

are needed. In order to receive a pre-built version of the both please contact the ENG

team that is responsible for QU4LITY’s task T3.6.

Instead, if you need to install your own Private Ledger system, you must start from

a stock distribution of Hyperledger Fabric v2.228. You will then need to deploy the

QCH smart contract (“chaincode” in Fabric’s jargon), the source code of which you

can find in this public GitHub repository29.

2.2.9.6 Documentation

The secure identity directory documentation is available on GitHub30.

28 https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
29 https://github.com/qu4lity/qu4lity-dapps/tree/master/sid
30 https://github.com/qu4lity/qu4lity-dapps/tree/master/sid

https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
https://github.com/qu4lity/qu4lity-dapps/tree/master/sid
https://github.com/qu4lity/qu4lity-dapps/tree/master/sid

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 31 of 75

2.2.10 Secure Messaging Board (SMB)

2.2.10.1 Description and Usage

Secure Messaging Board (SMB) enables the publishing of sensitive content (e.g.,

software, firmware, algorithms, parameters, data, documents) to subscriber

channels, with the added value of strong guarantees on provenance, integrity and

confidentiality. For instance, an OEM may safely send customized software updates

to any specific smart machine installed at a client site, or to all machines of a certain

type. While the actual content is stored as a binary object on any cloud facility, an

immutable and timestamped record on the ledger provides a “digital seal” that

guarantees its authenticity: the record includes a hash value calculated on the

content, so that any alteration to the latter can be easily detected. Moreover, the

SMB smart contract – in cooperation with SID (see previous chapter) – ensures that

the publisher is always correctly identified and cannot be impersonated by a malicious

actor.

The SMB smart contract is installed on QU4LITY’s Value Chain Ledger (VCL). This

version of the SMB DApp is distributed together with a command-line client tool that

offers a simple interactive interface. The client tool provides the basic read / write

functions: a POST command for publishing new messages or replacing exiting ones

with an updated version, a GET command for retrieving the latest version of given

message and a VERSION command that queries for the current version number of a

given message.

2.2.10.2 Relation with the Reference Architecture

SMB is a Distributed Application (DApp), the smart contract of which can be deployed

on either the Value Chain Ledger (VCL) or any Private Ledger (PL).

2.2.10.3 Dependencies

SMB depends on the SID smart contract (see previous chapter). The current

implementation only supports Google Drive as the cloud-based persistent storage for

binary objects, so at least one Google Drive account is also required. Future versions

will remove this limitation.

2.2.10.4 Availability

Any QU4LITY partner can experiment online with the SMB DApp, but with the caveat

that the VCL is just a “sandbox” environment: no guarantees are provided by the

VCL administrator that the system will be up 24/7, that data will be persisted for long

periods of time and that security will be properly managed.

A standalone deployment may also be done on any Private Ledger – refer to the

installation guidelines below.

2.2.10.5 Installation guidelines

To use the VCL instance of the SMB smart contract, only the command-line client tool

is needed. To receive a pre-built version of the tool, including the wallet.zip file

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 32 of 75

that enables access to the VCL, please contact the ENG team that is responsible for

QU4LITY’s task T3.6.

Instead, if you need to install your own Private Ledger system, you must start from

a stock distribution of Hyperledger Fabric v2.231. You will then need to deploy the

SMB smart contract (“chaincode” in Fabric’s jargon), the source code of which you

can find in this public GitHub repository32.

2.2.10.6 Documentation

The official documentation is available on GitHub33.

2.2.11 Quality Clearing House (QCH)

2.2.11.1 Description and Usage

Quality Clearing House (QCH) enables a decentralized workflow that targets a typical

Quality Management / ZDM process in a non-hierarchical supply chain scenario. It

provides a common “system of record” for a manufacturing ecosystem where actors

need to continuously assess the quality of raw material, parts and final products and

match the results against contractual standards that may change frequently. Thanks

to distributed ledger technology, QCH records are secure and trustworthy: they are

timestamped, immutable and non-repudiable. Data storage and business logic are

replicated on all the nodes of the system, which are operated equally by all

participants, so that no single “owner” of the system exists who may introduce bias

in the process.

The QCH smart contract is installed on QU4LITY’s Value Chain Ledger (VCL). The QCH

API is exposed by a Java library: Java applications are required to embed the library

in their code in order to exploit QCH’s functionality.

2.2.11.2 Relation with the Reference Architecture

QCH is a Distributed Application (DApp), the smart contract of which can be deployed

on the Value Chain Ledger (VCL).

2.2.11.3 Dependencies

No dependencies.

2.2.11.4 Availability

Any QU4LITY partner is allowed to experiment online with the QCH DApp, but with

the caveat that the VCL is just a “sandbox” environment: no guarantees are provided

by the VCL administrator that the system will be up 24/7, that data will be persisted

for long periods of time and that security will be properly managed.

31 https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
32 https://github.com/qu4lity/qu4lity-dapps/tree/master/smb
33 https://github.com/qu4lity/qu4lity-dapps/tree/master/smb

https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
https://github.com/qu4lity/qu4lity-dapps/tree/master/smb
https://github.com/qu4lity/qu4lity-dapps/tree/master/smb

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 33 of 75

A standalone deployment may also be done on any Private Ledger – refer to the

installation guidelines below.

Installation guidelines

To use the VCL instance of the QCH, only the client library is needed (see previous

section). In order to receive a pre-built version of the library, including the

wallet.zip file that enables access to the VCL, please contact the ENG team that is

responsible for QU4LITY’s task T3.6.

Instead, if you need to install your own Private Ledger system, you must start from

a stock distribution of Hyperledger Fabric v2.234. You will then need to deploy the

QCH smart contract (“chaincode” in Fabric’s jargon), the source code of which you

can find in this public GitHub repository35.

2.2.11.5 Documentation

The official documentation is available on GitHub36.

2.2.12 Security Privacy and Trust Framework

2.2.12.1 Description and Usage

The Security, Privacy and Trust Framework is the architectural platform of QU4LITY

for providing different cybersecurity functionalities such as security of data, privacy,

access control, monitoring, etc. This platform can be extended with additional tools

in order to provide even more functionalities in order to adapt the system to the

needs of the industrial platforms. Therefore, the platform allows for different tools to

be used and able to communicate using the communication channels and data

repository. This way the data can be correlated and used to obtain more expert

information of cyberattacks.

Additionally, being one of the tools about cybersecurity modelling, in order to allow

for cybersecurity-as-a-service, this could be extended and integrated with other tools

so it could be used for creating secure industrial systems from the design phase,

allowing for a more robust monitoring and protection of the data.

2.2.12.2 Relation with the Reference Architecture

The different tools of the SPT are related to different elements of the reference

architecture such as data storage and communication and access control systems.

This way, the solutions provided by the SPT could be used to protect the

communication from external systems to QU4LITY and for monitoring the

authentication and authorization of users to different tools or information of QU4LITY.

34 https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
35 https://github.com/qu4lity/qu4lity-dapps/tree/master/chq
36 https://github.com/qu4lity/qu4lity-dapps/tree/master/chq

https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
https://github.com/qu4lity/qu4lity-dapps/tree/master/chq
https://github.com/qu4lity/qu4lity-dapps/tree/master/chq

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 34 of 75

2.2.12.3 Dependencies

The SPT doesn’t have so far any dependency with other parts of QU4LITY as pre-

requisite. Tools of the SPT could interact with other components but they work in a

different level as they are self-contained tools that would use a common

communication channel and data structure for the security and privacy.

2.2.12.4 Installation guidelines

The different tools of the SPT that require specific integration and configuration (and

are available for access) are described in the following subsections (see 2.2.13 and

2.2.14 below).

2.2.13 XL-SIEM

2.2.13.1 Description and Usage

The function of the XL-SIEM is to create alarms by correlating every event detected

by its agent, as well as the monitoring sensors.

The SIEM have five clearly differentiated parts, one on the client side, and four on

the server side:

• A XL-SIEM Agent, which works a SYSLOG server, collecting all relevant

information and sending to the server.

• One docker container with a PostgreSQL database. It used to store all the info

(events, alarms, and correlated rules) generated in the project.

• One container with the GUI interface. Using its dashboard, the user can

visualize and filter the events and alarms and create new correlation rules.

• A message broker based in RabbitMQ used to interact between different

components of the SIEM.

• The topology is composed of 5 dockers and make the internal correlation and

generate the alarms to be stored in the database and to be showed in the

dashboard.

2.2.13.2 Relation with the Reference Architecture

The XL-SIEM will be used as a main tool in the SPT, focusing in the area of monitoring

and detection of malicious activities in the systems. This way, the information the

XL-SIEM produces can be accessed (and analysed) by a cybersecurity expert in the

dashboard of the tool. As this is the only tool in this area in the project we did not

integrate with others but due to its architecture it can easily be integrated either for

data access, correlation, or output of the analysis.

Additionally, the XL-SIEM is deployed in a QU4LITY server, which can then be

accessed by the user remotely (in the cloud). This is an additional option to have it

deployed in the same system to be monitored, so both provide for a more accessible

way of using the tool according to the resources of the stakeholder. This goes in line

with the QU4LITY architecture, as the XL-SIEM could be deployed in either way.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 35 of 75

Regarding the integration with the system to be protected, the users have to

download an agent that will be installed and configured. This agent will then send

information to the XL-SIEM, being local or remote, so the integration in the QU4LITY

platform is straightforward and simple.

2.2.13.3 Availability

The 4 parts of the SIEM server are deployed and working in our host. ATOS will give

support and keep it active and working.

Information of the deployment of the agent is provided in terms of script and

configuration files in order to help their integration and configuration.

The agent of the XL-SIEM is available in the repository of QU4LITY.

2.2.13.4 Installation guidelines

The XL-SIEM installation have mainly two parts; a python script which edit the

needed configuration files and a bash script with build all the containers.

To automate the installation, there is also a third script that launch the two scripts

mentioned above. A json file with the relevant information needs to be edited before

launching the first script. All the scripts are provided in Table 4, Table 5 and Table 6

of Appendix II – Native Installation Scripts below.

2.2.13.5 Documentation

The XL-SIEM have a graphical interface. It provides an easy and quick way to

visualize info and customize the XL-SIEM:

The main view of the GUI show at resume of all event and alarms generated at first

sight, as shown in the next figure:

Figure 9 Welcome view of event and alarms generated

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 36 of 75

Add a new Agent

Through the GUI, a new agent can be added. The user just have to submit the IP and

the name, and eventually some optional info.

Figure 10 XL-SIEM New agent addition

Figure 11 Entering user data

Create a new type of event

New type of events can be created

Figure 12 New type of events creation

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 37 of 75

Visualize all events

The main view of the SIEM gives the user a general view of all the events and alarms

generated:

Figure 13 XL-SIEM events

Figure 14XL-SIEM alarms

2.2.14 Anonymization Component

2.2.14.1 Description and Usage

This enabler aims to provide data anonymization services to digital data used for

collected from different ZDM equipment and processes. It assures the privacy of

critical and sensitive data while maintaining data utility and analysis. The privacy

models and data transformation methods are specified and applied by the ARX

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 38 of 75

anonymization tool37, which comes both as a graphical tool and a software library

with an API.

2.2.14.2 Relation with the Reference Architecture

This enabler is part of the “distributed trustworthiness” layer of the Reference

Architecture. As part of the security function of the Reference Architecture it serves

as a standalone enabler to assure data privacy among ZDM components and digital

platforms by providing data anonymization.

2.2.14.3 Dependencies

The graphical tool of ARX is a standalone desktop application that can be run on

Windows, Linux and MacOS machines. The software library of ARX comes in two

versions:

a) libarx, which contains all dependencies required for using all of ARX’s features

and,

b) libarx-min, which does not include external libraries required. The minimal

dependencies for libarx-min are the Colt38 open source libraries for high

performance scientific and technical computing, high performance primitive

collections (HHPC)39 for Java, the Apache commons mathematics library40 and

Java high-performance library for lattices (JHPL)41. The full list of

dependencies can be found here42.

2.2.14.4 Availability

The ARX data anonymization tool is available both as a cross-platform graphical tool

supporting data import, wizards for creating transformation rules, and visualizations

of data utility and re-identification risks, and as a software library with an API that

delivers data anonymization capabilities to any Java program.

2.2.14.5 Installation guidelines

The ARX graphical anonymization tool is a platform-independent Java/SWT

application. It can be downloaded from its official website43 as self-contained binary

installers as well as executable jar files.

2.2.14.6 Documentation

The documentation is common with XL-SIEM digital enabler (see section 2.2.13.5

above).

37 https://arx.deidentifier.org
38 https://dst.lbl.gov/ACSSoftware/colt
39 http://labs.carrotsearch.com/hppc.html
40 https://commons.apache.org/proper/commons-math
41 https://github.com/prasser/jhpl
42 https://arx.deidentifier.org/development/dependencies
43 https://arx.deidentifier.org/downloads

https://arx.deidentifier.org/
https://dst.lbl.gov/ACSSoftware/colt
http://labs.carrotsearch.com/hppc.html
https://commons.apache.org/proper/commons-math
https://github.com/prasser/jhpl
https://arx.deidentifier.org/development/dependencies
https://arx.deidentifier.org/downloads

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 39 of 75

2.3 Integrated Digital Enablers

In this section we present a list of interoperable digital enabler groups that are

packaged together to offer a combined solution.

2.3.1 Data Transformation Platform + DataCROP

2.3.1.1 Description and Usage

This integrated digital enabler uses the Data Transformation Platform (presented in

section 2.2.2) and a data repository (MongoDB) with the objective of providing a

system for collecting and storing information coming from the industrial assets of a

plant in the form of messages. The platform also offers an API to consume that

information from AI applications, monitoring tools or data analysis algorithms. The

platform comes from a previous project (Mantis). Improvements have been included

to the platform that now includes the following components:

• Data access and ingestion through an Edge Broker. This is part of the Data

Transformation Platform presented in section 2.2.2. The Edge Broker is

composed of Publish-Subscribe servers that collect messages sent by the CPS

connected to the assets in the plant. CPS messages are generated according

to the communication and information model proposed by AAS. The solution

has been implemented using; RabbitMQ and Advanced Message Queuing

Protocol (AMQP).

• Translator/Converters to collect the messages coming from the edge broker

and sent them to the repository. The converters have been implemented using

Node-RED. This converters have the capability to additionally offer REST

endpoints. This component is also part of the Data Transformation Platform

presented in section 2.2.2.

• Data Storage systems to store those messages using MongoDB.

• A messaging system based on AAS uses the edge broker (RabbitMQ) to

accommodate different types of payload (values, files and events).

• A REST API is offered to consume the information store in the MongoDB

repository. The API has been developed using Node-RED (part of the Data

Transformation Platform digital enabler).

This integrated digital enabler is used in the Mondragon pilot which enables the

construction of a messaging architecture to collect information from assets. In

addition, the API allows to consume data stored in the repository. The API is

consumed by a visualization solution built with Grafana44 that monitors process

events and parameters in the pilot. More details on this integrated digital enabler will

be provided in the deliverable associated to the pilot (to be developed).

2.3.1.2 Dependencies

Data Transformation Platform has the following environment and software

dependencies:

44 https://grafana.com/

https://grafana.com/

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 40 of 75

• WSO2 Integrator >= 6.5.0

• RabbitMQ >= 3.8.17

• Node-RED >= 1.3.5

• Node.js >= 12.22.1

• MongoDB >= 4.4.6

2.3.1.3 Availability

This integrated digital enabler is an Open-Source software under MIT license and is

offered as source code and a containerized solution at GitHub. In the following sub-

section, we provide details for its availability.

2.3.1.3.1 GitHub Distribution

The components for this enabler are images available in Docker Hub and the

containerized solution is available from GitHub. Code in the form of Node-RED flows

is also part of the solution. This code permits message collection and API provision.

Links to the relevant repositories are provided below:

• Data Transformation Platform + DataCROP

o https://github.com/qu4lity/dtp-crop

2.3.1.4 Installation guidelines

The core infrastructure of the Data Transformation Platform + DataCROP is deployed

effortlessly by taking advantage of the facilities offered by Docker. The platform

deployment scripts can be found on GitHub45.

For a test deployment the following scripts and sample data are offered:

• README.md: a text file containing instructions on how to deploy the platform

• Docker-compose.yml: a YAML file containing the configurations of the

various Docker containers (Docker images, environment variables,

networking, data volumes configuration etc.).

• Node-red: a folder holding Node-RED’s Dockerfile and the flows necessary to

collect information from the edge broker and to offer data through the REST

API.

• Mongo: a folder to assure persistence of the MongoDB collections created

with the platform.

By following the instructions given in the README file, one may both deploy and

undeploy the various components of the integrated Digital Enabler. To do so, Docker

Compose is being used. Compose is a tool for defining and running multi-container

Docker applications. A YAML file is being employed to configure all application’s

services. Then, with a single command, one may create and start all the services

from the aforementioned configuration46.

45 https://github.com/qu4lity/dtp-crop
46 https://docs.docker.com/compose/

https://github.com/qu4lity/dtp-crop
about:blank

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 41 of 75

Starting up

In order to put the project working, you must execute the following command (docker

and docker-compose must be already installed) in the folder where docker-

compose.yml is:

• docker-compose up -d

This will create and start 4 containers:

1. Node-RED => at port 1880

2. RabbitMQ => at port 5672 (management at port 15672)

3. MongoDB => at port 27017

4. MongoDB Express => at port 8081

The first time we run the containers, the username and password for RabbitMQ should

be added to node-red nodes connecting to RabbitMQ. In order to do that, we have to

access Node-RED (e.g. http://localhost:1880) and edit the configuration nodes

(amqp-server node and mongodb node):

• amqp-server node: adding the username and password in the security tag.

• mongodb node: adding the username and password directly in the

configuration node.

Deploy the changes and the connections to RabbitMQ and Mongo should be working.

The containers are stopped using the following command:

• docker-compose down

Testing

We will send a AMQP message through RabbitMQ, receive it and add the content to

a MongoDB collection. Then we will the endpoint to retrieve the entire collection.

1. Open Node-REd in a browser (e.g. ```http://localhost:1880).

2. Go to RabbitMQ tab and press the blue button (inject node).

3. Open the HTTP endpoint in a browser: (e.g.

http://localhost:1880/get/UserCollection) for UserCollection.

4. A user with admin username should be visible.

2.3.2 DataCROP + LDM + Fault Identification

2.3.2.1 Description and Usage

This solution facilitates the data collection, data management and usage of

Mondragon’s Fault Identification algorithm. The mission of the algorithm is, given a

collection of sensor measurements as input to detecting anomalies in time-series in

JSON format. The anomaly detection is then packaged in the “value” property of the

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 42 of 75

outgoing message of type “Observation” (from the LDM), which is handled by the

DataCROP platform, in order to be returned to a Kafka bus. The results (Observation)

are annotated based on the LDM and are available to be further aggregated or

analysed by the DataCROP platform or be used from any third-party application.

2.3.2.2 Integration

DataCROP platform offers specialized wrappers with standard interfaces in order to

facilitate the integration of third-party standalone algorithms. These rappers handle

in a standardized way the required interactions with the Processor Engine and the

subscription/publishing to the Message Bus. The subscriptions to the appropriate

topics in the DataCROP message bus of the message bus would be used to get

information as soon as it becomes available, and the publishing is for “writing” the

results back to the appropriate topics as soon as they are produced. For the fault

identification algorithm, a Python wrapper is offered.

The wrapper, after receiving an Observation from Kafka, isolates a double carried in

its "value" element. Then it executes the Python script with the double as input. After

that, it receives the calculation result and repackages it in an Observation. Finally, it

publishes the new Observation to Kafka.

If the default configuration is maintained, the two involved Kafka topics are "incom-

ing_messages" and "output_messages".

2.3.2.3 Availability

As mentioned above DataCROP (along with the LDM and the Java Wrapper) is an

Open-Source software and is offered both as source code at GitHub but as well as a

containerized solution at Docker Hub (see section 2.2.1). The Fault Identification

algorithm is not open source, so the code/artifact distribution is not available. For the

QARMA analytics please contact Mondragon University47.

2.3.2.4 Installation guidelines

It follows the same principles as the ones described in section 2.2.1.5 above.

2.3.3 DataCROP + LDM + QARMA Analytics

2.3.3.1 Description and Usage

This solution facilitates the data collection, data management and usage of QARMA

machine learning algorithm. The mission of the algorithm is, given a collection of

sensor measurements as input to produce a prediction in JSON format. The prediction

is then packaged in the “value” property of the outgoing message of type

“Observation” (from the LDM), which is handled by the DataCROP platform, in order

to be returned to a Kafka bus. The results (Observation) are annotated based on the

47 ezugasti@mondragon.edu

mailto:ezugasti@mondragon.edu

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 43 of 75

LDM and are available to be further aggregated or analyzed by the DataCROP

platform or be used from any third-party application.

2.3.3.2 Integration

For this integration the QARMA analytics wrapper variation has been implemented.

This wrapper supports algorithms which are written in Java (QARMA Algorithm) and

subsequently introducing it to the wrapper not as an external executable script but

as a Java library included in the project as an Apache Maven dependency.

Since the Wrapper is also written in Java (as we can see in Figure 15 below) this

library is automatically be packaged in the Java wrapper JAR file, without the need

to place the external algorithm script in a particular directory in the filesystem. The

QARMA predictor exported methods available directly from use within the code:

Figure 15: The QARMA algorithm used in the wrapper as a library

The implementation of the QARMA wrapper also bears the distinctive characteristic

of collecting the input messages into bundles before pushing them into the actual

QARMA code as input. As each message corresponds to a collection of timestamped

sensor measurements and the algorithm requires a time series for increased accuracy

in predicting RUL, the wrapper assumes the additional role of the entity remembering

and packaging the “latest x timestamped measurements” into a single structure

before “feeding” them to QARMA. In addition, this “x” variable is configurable as an

environment variable that can be introduced using the ML dashboard (not unlike the

Kafka virtual address and the topic names).

2.3.3.3 Availability

As mentioned above DataCROP (along with the LDM and the Java Wrapper) is an

Open-Source software and is offered both as source code at GitHub but as well as a

containerized solution at Docker Hub (see section 2.2.1). QARMA analytics is not

open source so the code/artifact distribution is not available. For the QARMA analytics

please contact Intrasoft International48.

2.3.3.4 Installation guidelines

It follows the same principles as the ones described in section 2.2.1.5 above.

48 ioannis.soldatos@intrasoft-intl.com

mailto:ioannis.soldatos@intrasoft-intl.com

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 44 of 75

2.3.4 DataCROP + LDM + Secure Messaging Board (SMB)

2.3.4.1 Description and Usage

This solution offers all the functionalities of the DataCROP component (collection,

routing, pre-processing and annotation of collected data) but is enhanced with

decentralized data reliability offered by the Secure Messaging Board (SMB)

component. DataCROP is enhanced following the principles below:

• Secure Messaging Board by supporting DataCROP Processor Engine provides

the capability for distributing processor manifest objects (e.g., analytics

configuration data) across multiple gateways. Note that a processor manifest

defines how data streams are to be processed by an individual Processor

Engine, using a combination of predefined data processing elements and

workflow instructions. Using the SMB and Distributed Ledger as the

distribution channel, DataCROP ensure a truly decentralized but also reliable

system, as processor manifests are "signed, sealed and timestamped" so that

no forgery or tampering is possible.

• DataCROP can also utilize a result publishing service offered by SMB that

makes it possible for processor instances (e.g. analytics), wherever deployed,

to share their results on the Distributed Ledger infrastructure, thus

contributing to a common data set representing the combined results across

the entire distributed system. The virtues of such as workflow guarantees on

provenance, integrity and confidentiality of the results.

2.3.4.2 Integration

For the integration of the two enablers the SMB replaces the DataCROP Model and

Registry repository by supporting specialised interfaces for the Data Source Manifests

(DSM), Processor Manifests (PM), Data Source Definitions (DSD) and Processor

Definitions (PD). Moreover, for the result persistence SMB offers also support for the

DataCROP Observations. The above-mentioned data models are described in more

details in deliverable D3.13 section 5.3.

2.3.4.3 Availability

As mentioned above DataCROP (along with the LDM) and SMB are Open-Source

software and are both offered at GitHub (see sections 2.2.1 and 2.2.10 above).

DataCROP is also offered as a containerized solution at Docker Hub (see section

2.2.1).

2.3.4.4 Installation guidelines

It follows the same principles as the ones described in sections 2.2.1.5 and 2.2.10.5

above respectively.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 45 of 75

2.3.5 QU4LITY Ontology + Visual Component Simulation

2.2.6.1 Description and Usage

The QU4LITY Ontology, as introduced in Section (2.1.1) is applied to support the

development of application ontologies for different pilots. One of the applications is

the Airbus pilot, where an application ontology is developed and integrated with the

Visual Component simulation system to create a trade space framework for aircraft

production system design. It focuses on the research and development phase of the

assembly line for a new model of aircraft. During this early phase, industrial architects

need to evaluate different industrial scenarios and to perform trade-off to optimize

the future industrial architecture using different performance parameters. More

specifically, the application scenario focuses on the fuselage orbital junction process

to be designed for one assembly station of the Final Assembly Line (FAL) for the new

aircraft model. There are two options to execute the orbital junction process, i.e. a

manual process and an automated process using a flex-track robotic mechanism.

The trade-off is expected to be performed between the manual process and the

automated flex track process. The main differences between them are the external

and internal drilling operations. For the manual process, both drilling operations are

performed by operators; for the automated option, the external drilling operations

are performed by the Flex Track robot while the internal drilling operations are

performed by operators.

According to the application scenario, the overall functional architecture for this pilot

is defined as shown in Figure 16Figure 16, it contains several function blocks including

Requirement Management block, Architecture Definition block, Visualization block,

System Integration block and Verification block. The ontology is the core of the

System Integration block which integrates all relevant data and information from

other blocks.

Figure 16 Overview of the functional architecture of trade space framework for aircraft production

system design

As shown in Figure 17, the ontology serves as the information and knowledge

integration hub providing input for the discrete event simulation (DES) and 3D

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 46 of 75

simulation in the verification block. The ontology is exported as OWL file and a

customized OWL parser is developed to parse the ontology and extract necessary

information for the simulations. The simulation function is supported by Visual

Components 3D factory simulation suite that consists of a set of innovative tools

which set the standard for modern simulation. The simulation suite gives machine

builders, system integrators, and manufacturers around the world a simple, quick,

and highly cost-effective way to build and simulate their total process solutions. The

simulation results are further processed and visualized by the visualization function

block to support decision making.

Figure 17 The roles of application ontology and 3D simulation in the trade space framework

2.3.5.1 Availability

The entire trade space is still under development and is not yet ready for sharing.

The current application ontology is open available on WebProtégé49, which is under

frequent update. The Visual Components 3D factory simulation suite is provided by

partner Visual Components50. More details about the software are available on the

website provided.

2.3.5.2 Installation guidelines

The current version of this ontology is available, read-only, on Webprotégé. For

editing and redesign, it can be exported in different format such as RDF, XML, Turtle,

OWL etc. The integration and parser for the simulation software is still under

development, which will be shared by the end of the Airbus pilot.

2.3.6 Anomaly Detection for Assembly Process / Shift-In Movement

2.3.6.1 Description and Usage

Fraunhofer-IPA develops a ML based system for anomaly detection. The system can

be tailored to different assembly processes in order to identify process anomalies as

early as possible and to enable corrective actions. The system requires data from the

production line: One key requirement is that process data is available from the

49 https://webprotege.stanford.edu/#projects/8b324962-cac1-43ff-8e31-428dd4ae654f/sharing
50 https://www.visualcomponents.com/

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 47 of 75

assembly process itself. This may contain time series from encoders (integrated in

axis from linear actuators and robots), fore-torque-sensors, force-way-sensors

and/or other relevant sensors. The system also utilizes data from EOL test station

(or from other subsequent test assessments).

Anomaly detection takes place on an edge device that is located at the production

site. The software on the edge device performs the ML based inference (i.e., the

evaluation of the current/previous cycle), in combination with other auxiliary tasks

like data pre-processing, data fusion or database storage. It also performs training

of the ML models when the ML model complexity is low.

In case of ML models with high complexity, the training of the ML models takes place

in the cloud, i.e., the training is performed by cloud services. The cloud services are

available at clouds operated by Fraunhofer IPA (e.g., Virtual Fort Knox).

2.3.6.2 Availability

The software running on the edge device will be available as a docker container. This

facilitates the integration into different environments. By now, it is however not

decided yet how the adaption to a specific productions process will be implemented.

2.4 QU4LITY Open-Source Digital Enablers

Several of the Digital enablers described above are offered as Open-Source Software,

thru QU4LITY GitHub51 organization (see Figure 18 below), following the code

management methodology described in this deliverable. As mentioned in section

2.1.3, most of the digital enablers had pre-existing codebase which was mirrored

under the QU4LITY GitHub organization. The Digital enablers that are provided thru

the QU4LITY GitLab are also listed below:

1. One-click deployment of a disaggregated 5G cloud-native E2E network from

TID

o Available at: https://github.com/qu4lity/tid-kube5g

2. QU4LITY Cloud Infrastructure from ENG

o Available at: https://github.com/qu4lity/qu4lity-cloud-bridge

3. Q-Ontology Enabler from ENG

o Available at: https://github.com/qu4lity/q-ontology-enabler

4. OpenVA from VTT

o Available at: https://github.com/qu4lity/vttopenva

5. DataCROP DDA Platform from INTRA

o Available at: https://github.com/qu4lity/data-crop

6. QU4LITY DApps from ENG which includes the

a. Secure Identity Directory (SID) available at:

https://github.com/qu4lity/qu4lity-dapps/tree/master/sid

b. Secure Messaging Board (SMB) available at:

https://github.com/qu4lity/qu4lity-dapps/tree/master/smb

51 https://github.com/qu4lity

https://github.com/qu4lity

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 48 of 75

c. Quality Clearing House (QCH) available at:

https://github.com/qu4lity/qu4lity-dapps/tree/master/chq

7. Data Transformation Platform from MGEP.

o Available at: https://github.com/qu4lity/data-transformation-platform

8. Data Transformation Platform + DataCROP from MGEP + INTRA.

o Available at: https://github.com/qu4lity/dtp-crop

Figure 18 below illustrates the GitHub QU4LITY organization welcome page with the

available digital enabler repositories.

Figure 18 QU4LITY GitHub organization.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 49 of 75

3 QU4LITY Platform Interoperability
According to the definition of IEEE, “interoperability” means the ability for two (or

more) systems or components to exchange information and to use the information

that has been exchanged. Interoperability plays a key role in ZDM-related scenarios.

In broader context, interoperability describes the ability of a system or software

application to exchange or make use of data and is an essential requirement for all

hard and software elements that participate in the exchange of information in the

given framework. Due to a cross-linking of multiple systems in various domains in

I4.0, interoperability now extends and comprises a much broader framework.

Therefore, regarding common RA components, interoperability combines all three

layers, integration layer, communication layer, and information layer, as introduced

in the RAMI4.0 architecture.

Modern industrial products and systems are highly complex which usually involve

multiple standards, such as ETSI, IETF, IEEE, ITU-T and ISO etc., as well as

requirements set by Industry forums. QU4LITY interoperability specifications are

applied to direct the work to be accomplished by a QU4LITY Pilot in terms of

interoperability. The specifications define essential technical and operational

standards that must be met by technical systems across QU4LITY interoperability

scenarios. This should be done to meet the key requirements and ensure

interoperability in respect of components and interfaces.

3.1 QU4LITY Common Standards used

In the deliverable D2.8, QU4LITY Task 2.4 has thoroughly reviewed the

interoperability requirements of QU4LITY pilots. The requirements of every pilot are

investigated mapping to different degrees of interoperability: Unstructured Data

Exchange, Structured Data Exchange, Seamless Sharing of Data, and Seamless

Sharing of Information. According to the QU4LITY RA, the general interoperability

requirements are analysed based on the RA components defined in D2.12, including

Collaboration, Business and Operation Services; Engineering and Planning Services;

Data-driven Modelling and Learning Services; Digital Twin and Planning Services;

Simulation and Human-centric Visualization Services; IoT Automation Services;

Control Services; Assets & Smart Products; HPC; Cloud; Value Chain Ledger; Data

Lake / Big Data Analytics Infrastructure; IoT Hub; Private Ledger; Edge/Fog; 5G

Multi-Access Edge Computing.

Based on the requirements of each pilot, interoperability standards, protocols and

related frameworks are collected and classified. These protocols and standards are

grouped into the following layers to provide some level of organization:

Communication protocol; Semantic; Network functionality; Physical functionality;

and Multi-layer framework.

• Communication protocol: OPC-UA, Modbus, GigE Vision, USB3.0, Profibus,

CameraLink, MQTT, QIF, HTTP/REST, SSH/FTP, PPMP, MTconnect, CoAP,

AMQP, DDS, XMPP.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 50 of 75

• Semantic: AutomationML, SSN Ontology, IoTDB, SensorML, LsDL, RAML,

SENML, MPFQ.

• Network functionality: TCP; UDP; Routing – RPL (RFC6550), CARP;

IPv6/IPv4; addressing, Multicast, QoS, Security; IEEE 802.1X EAP T/TLS.

• Physical functionality: 5G; IEEE 802.15.4; ISA 100.11a; Bluetooth;

WirelessHART; LAPWAN; 3G/LTE; ANT+; IEEE 802.2 Ethernet; RFID/NFC;

IEEE 802.22 Wi-Fi; DigiMesh.

Multi-layer framework: AllJoyn; IoTivity; ZigBee; ROS; Z-Wave; KAFKA; Thread.

Figure 19 Overview of interoperability standards, protocols and frameworks for ZDM

According to this classification, the standards used by the QU4LITY pilots (green) are

shown in Figure 19, together with other standards and protocols that extend the

groups. The detailed standards are introduced in D2.8 Chapter 4.1.

A survey was conducted by T2.4 to investigate the application of relevant protocols,

standards concerning interoperability used by the QU4LITY pilots. Part of the results

are shown in Figure 20 below. In can be seen, that MQTT and OPC-UA are most

frequently used, whereas some pilots use proprietary communication protocols and

APIs. It is also obvious, that Edge/Fog hardware tend to have very broad

interoperability needs ranging from GigE Vision, over Profinet to MQTT and Wi-Fi.

Overall, different standards and protocols are needed for different applications and

their specific requirements.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 51 of 75

Figure 20 Standards, protocols and frameworks for ZDM currently used by the pilots

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 52 of 75

4 QU4LITY Semantic Interoperability
Semantic interoperability refers to the ability of information systems to exchange

data unambiguously with shared meaning, which enables machine computable logic,

inference, knowledge discovery, and data federation between information systems.

Semantic interoperability is concerned with the packaging of data (syntax) as well as

with the simultaneous transmission of the meaning with the data (semantics). This

is accomplished by adding data about the data, called metadata, linking each data

element to a controlled, shared vocabulary. The meaning of the data is transmitted

with the data itself, in an information package that is independent of any information

system. It is this shared vocabulary, and its associated links to an ontology, which

provides the foundation and capability of machine interpretation, inferences, and

logic.

To achieve semantic interoperability across different ZDM equipment and processes,

a range of data models and vocabularies are. The specification of these data models

should be based on existing standards for representing plants, production processes

and quality processes information. The specifications of various openly accessible

digital models, such as MPFQ-model (Material, Production Process, Product

Functions/Features, Product Quality), will provide reference mechanisms (e.g., APIs

and tools for Create-Read-Update-Delete (CRUD) operations with bindings in

different languages and formats) for implementing similar models for QU4LITY

project.

4.1 QU4LITY Semantic Data Models and Ontologies

4.1.1 QU4LITY Semantic Data Models

To integrate all relevant elements that affect product and process quality, a RMPFQ-

model is developed in Task T2.5 which focuses on “QU4LITY Digital Models and

Vocabularies”. This model is based on the previously developed MPFQ model which

has been introduced in the previous version of this report. The previous MPFQ model

only covers the processes of assembly manufacturing covering Material, Process,

Function and Quality. In QU4LITY project, pilots focusing on both machining and

assembly processes are included. Therefore, the RMPFQ model is developed by

adding a Resource element. The definition of each element is listed as follows:

• Manufacturing Resource, according to ISO 15531, represents the devices,

tools and means, at the disposal of the enterprise to produce goods and

services, but except raw material and final product components,

• Material represents everything that is needed to produce a certain product or

product component, which may include raw materials, pre-products,

consumables, operating supplies, product components and assemblies,

• Manufacturing Processes are defined as processing and transforming

materials into the final goods by using machines, tools and human labour.

This process is defined within the plant engineering,

• Product Functions / Features represent the distinguished characteristics of a

product item, which may include functionalities like specific tasks, actions or

processes that the product is able to perform; and/or other features like

performance,

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 53 of 75

• Product Quality (Q) is defined as, according to DIN EN ISO 9000, the degree

of conformance of final product functions and features to designed

requirements.

Figure 21 RMPFQ-model elements and their interrelations

Figure 21 shows the elements of the proposed RMPFQ-model and their interrelations,

as well as some data related to these elements. First, a given workpiece (M) is

machined by machining resources (R), e.g. a given setup (fixturing and associated

tooling) and a cutting tool (R), through a planned machining process (P), composing

the RPM interactions (marked with orange lines). Second, the machining process (P)

uses input material (M) and resources (R) to produce one or more features (F),

composing the RPMF interactions (marked with blue lines). Moreover, all the RMPF-

elements may also have straightforward impact on the quality (Q) of the machined

workpiece (marked with green lines). There also exist relations among different

resources, i.e. machine, setup, and cutting tool.

This model covers the most critical factors that affect the quality of a product or

process. Each of the elements can be further decomposed into lower-level

components in practical applications. More details are introduced in D2.10.

4.1.2 QU4LITY Ontologies

The structure of the QU4LITY Ontologies is as shown in Figure 22. It includes a series

of ontologies corresponding to different levels. The core of these ontologies is the

QU4LITY Domain Ontology which is based on the IOF-CORE Ontology as introduced

in previous sections. Under that, two subdomain ontologies, i.e. process-oriented

subdomain ontology and machine-oriented subdomain ontology will be developed

corresponding to the two types of the QU4LITY pilot. Finally, several application

ontologies based on certain pilots will be developed to demonstrate how the

ontologies are applied in real use cases.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 54 of 75

Figure 22 Structure of the QU4LITY Ontologies

The general structure of the QU4LITY Domain ontology follows the IOF-CORE

ontology with more subclasses being added. The vocabularies of the ontology are

organized according to the RMPFQ model as shown in Figure 23.

The lowest ontological level is the application-level ontology, which aims to represent

specific application cases with highly specialized classes and individuals such as a

device from a specific manufacturer, a work station, a production line etc. The

application ontology will often use or reference domain ontologies to construct

ontological classes and relationships between classes. For QU4LITY pilots, application

ontologies can be developed follow the QU4LITY domain ontology introduced above.

In D2.10, several application ontologies are introduced with detailed application

background and development approach.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 55 of 75

Figure 23 Structure and main classes of QU4LITY domain ontology

4.1.3 Application of QU4LITY Data Models and Ontologies

The main target of QU4LITY data models and ontologies is to enhance interoperability

between different sources of data and information. Depending on the application

scenario, customized application ontologies can be developed under the structure of

the QU4LITY domain ontology as introduced above. The RMPFQ data model can be

used to identify and organize relevant factors that can affect the quality of a produce

or a process. More details can be found in D2.10 which introduces detailed

applications cases.

Another application of the QU4LITY data models and ontologies is to support

semantic-driven digital twin models. Conventional digital twin models are lack of

autonomous capabilities which are critical for realizing the AQ vision. Domain

ontologies enable to capture and summarize intuitive information in a complex

system using standardized languages. Augmented semantic capabilities can be added

to digital twins by integrating semantic modelling technologies, thus to identify the

dynamics of virtual model evolution and enhancing the decision-making capabilities.

An exemplary semantic-driven digital twin model for machining processes have been

developed based on the QU4LITY data models and ontologies. The general structure

of this model is presented in Figure 24, which consists of five main components,

including physical manufacturing system, virtual models, data management and

services. The data management component is the core of the proposed semantic-

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 56 of 75

driven DT model as it connects all the other components. The data collected from the

elements of the proposed RMPFQ-model are also integrated in this component.

Figure 24 Semantic-driven digital twin model for machining processes

The data models and ontologies are applied mainly in three pilots including the Airbus

production system trade space framework and GF machining abnormal detection

system process quality management.

The application ontology of Airbus pilot aims to integrate information about system

requirements and behaviour models, and then provide support for simulation. As the

first step, both ontology and behaviour model (SysML model) will take process

diagram as input to assure the alignment. The ontology will provide input for

simulation (in JSON or XML). Once the knowledge base is created, in future phases,

the ontology will be updated automatically according to the behaviour models.

The GF pilot application ontology follows the machine-oriented subdomain ontology.

It aims to formalize the domain knowledge of the machining process to provide

support for defect detection, predictive maintenance, and process optimization etc.

The domain experts including the machining engineers, machine manufacturers,

process planning experts etc., work together to define the machining process,

operation parameters, possible defects and data collection approaches etc.

More details about the applications are introduced in WP2 deliverable D2.10 and some

on-going works will be presented in WP7 pilot achievements by the end of the project.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 57 of 75

4.1.4 Semantic Models and Vocabularies implementation

4.1.4.1 Description and Usage

Semantic Models and Vocabularies aims to provide a range of data models and

vocabularies to drive the flow and exchange of digital data across different ZDM

equipment and processes. It is one of the key enablers to enhance the interoperability

between different components of the reference architecture. The digital models are

summarized through the RMPFQ model; and the vocabularies are specified in a series

of ontologies including the QU4LITY domain ontology and multiple pilot application

ontologies.

4.1.4.2 Relation with the Reference Architecture

This enabler is the foundation of the “Digital Models and Vocabularies” layer of the

Reference Architecture (see Figure 1 above). It has close connections with the

Interoperability Assurance Layer. It takes input from Interoperability Assurance Layer

about user stories and stakeholder’s requirements for assuring interoperability

among components. In return, it provides semantic models to enable the

interoperability among ZDM components and digital platforms. Besides, it also

provides data models and semantic models to support data-driven services and

digital twin modelling components.

4.1.4.3 Dependencies

The QU4LITY domain ontology and relevant application ontologies are constructed

based on the IOF-Core ontology which refers to the Basic Formal Ontology (BFO).

4.1.4.4 Availability

The current version of this ontology is available, read-only, on Webprotégé52. For

editing and redesign, it can be exported in different format such as RDF, XML, Turtle,

OWL etc.

The IOF-Core ontology is developed by the IOF CORE Working Group53. It is still

under active development. A repository of the latest version of the Core ontology is

shared on Github54 which is open available.

4.1.4.5 Documentation

More details about the usage of the enabler are introduced in WP2 deliverable D2.10

with application examples based on multiple pilots.

52 https://webprotege.stanford.edu/#projects/8b81796d-6c0c-4cfb-875a-df68a444c1af/edit/Classes
53 https://www.industrialontologies.org/top-down-wg/
54 https://github.com/NCOR-US/IOF-BFO/tree/IOF-Core-2020

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 58 of 75

4.2 Lightweight Digital Models for ZDM (FAR-

EDGE/PROPHESY data model)

4.3 Lightweight Digital Models

The Lightweight Digital Models (LDM) offers a simplified consolidation and

management of digital information across distributed applications. The LDM where

developed in the scope of background projects of the partners (i.e. H2020 FAR-EDGE

and H2020 PROPHESY).

4.3.1 Description and Usage

The LDM are used to support the representation of factory data, metadata of different

manufacturing data sources and analytics. The following core entities are used:

For the factory Data and Metadata:

• Data Source Definition (DSD): Defines the properties of a data source on

the shop floor, such as a data stream from a sensor or an automation device.

• Data Interface Specification (DI): The DI is associated with a data source

and provides the information need to connect to it and access its data,

including details like network protocol, port, the network address and more.

• Data Kind (DK): Specifies the semantics of the data source. The DK can be

used to define virtually any type of data in an open and extensible way.

• Data Source Manifest (DSM): Specifies a specific instance of a data source

in-line with its DSD, DI and DK specifications. Multiple manifests (i.e. DSMs)

are therefore used to represent the data sources that are available in the

factory in the scope of the predictive maintenance platform.

• Observation: Models and represents the actual dataset that stems from an

instance of a data source that is represented through a DSM. Hence, it

references a DSM, which drives the specification of the types of the attributes

of the Observation in-line with the DK that facilitates the discoverability of the

data. An Observation is associated with a timestamp and keeps track of the

location of the data source in case it is associated with mobile (rather than a

stationary) edge node. An Observation has a location attribute (virtual or

physical), which identifies the placement of the data source. The value type

of observation is a complex object which is described with the DK entity that

an Observation references. Hence, an observation can depict multiple raw

measurements coming from a machine or a single value (i.e. the number of

cycles/m of a rotor) or even an Analytics Processor result (i.e. the calculated

RUL of a machine).

• Edge Gateway: Models an edge gateway of an edge computing deployment

of the predictive maintenance platform. In the scope of deployment of the

platform, data sources are associated with an edge gateway. This usually

implies not only a logical association but a physical association as well, i.e. an

edge gateway is deployed at a station and manages data sources in close

physical proximity to the station.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 59 of 75

For the factory Data Analytics and Metadata:

• Analytics Processor Definition (APD): This specifies a processing function

to be applied on one or more data sources. Three processing functions are

defined, including functions that pre-process that data of a data source (i.e.

Pre-Processors), functions that store the outcomes of the processing (i.e.

Store Processors) and functions that analyse the data from the data sources

(i.e. Analytics Processors). These three types of processors can be combined

in various configurations over the data sources in order to define different

analytics workflows.

• Analytics Processor Manifest (APM): This represents an instance of a

processors that is defined through the APD. The instance specifies the type of

processors and its actual logic through linking to a programming function. In

the case of DataCROP, the latter is a class implemented in the Java language.

• Analytics orchestrator Manifest (AM): An AM represents an entire

analytics workflow. It defines a combination of analytics processor instances

(i.e. of APMs) that implements a distributed data analytics task. The latter is

likely to span multiple edge gateways and to operate over their data sources.

LDM have been used in several pilots and open calls (e.ge. RIASTONE,

THYSSENKRUPP, IDEAL) as a mean to facilitate the QARMA4Industy algorithm for

estimating RUL values. More details about LDM data model can be found in section

5.3 of the first version of this deliverable namely D3.13.

4.3.2 Relation with the Reference Architecture

The LDM is placed at the “Digital Models and Vocabularies” layer (see Figure 1 above)

as they may be used as the basis for automated configuration, simulation and field

abstraction.

4.3.3 Dependencies

As a component the LDM has the following environment and software dependencies:

• MongoDB >= 3.6.4

• Node.js >= 10.1.0

• npm >= 5.6.0

4.3.4 Availability

LDM is part of the DataCROP platform and since it is an Open-Source software is

offered both as source code at GitHub55 but as well as a containerized solution at

Docker Hub56. In the following two sub-sections, we provide details for this

availability.

55 https://github.com/qu4lity/data-crop
56 https://hub.docker.com/u/faredge

https://github.com/qu4lity/data-crop
https://hub.docker.com/u/faredge

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 60 of 75

4.3.4.1.1 GitHub Distribution

LDM source code is offered under the Apache License 2.0 and its components are

available from GitHub57. LDM is consisted of the following components:

• Model Repository

• Digital Models

4.3.4.1.2 Docker Distribution

DataCROP dockerized components are offered thru Docker Hub and various

deployment options are also available by offering the equivalent YAML files for Docker

Compose and Docker Swarm.

DataCROP DDA Docker Hub availability is provided below:

• Model Repository

o https://hub.docker.com/repository/docker/faredge/model-repository

4.3.5 Installation guidelines

It follows the same principles as the ones described in section 2.2.1.5 above.

57 https://github.com/qu4lity/data-crop

https://github.com/qu4lity/data-crop

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 61 of 75

5 Conclusions
This deliverable has dealt with two important issues for the QU4LITY digital

infrastructure and enablers, namely:

• The integration of different digital enablers into turnkey solutions, in-line with

the reference architecture of the project (QUALITY-RA).

• The interoperability across diverse components of these turnkey solutions

including both syntactic and semantic interoperability.

These issues have been addressed in the deliverable in-line with the QUALITY-RA and

based on the following principles:

• Adherence to industry best practices, notably best practices for the

modular packaging and distribution of the QU4LITY components, using

popular platforms for stack management and source code management such

as Docker and Github. Likewise, known approaches for syntactic and semantic

interoperability have been followed.

• Development of custom value-added infrastructures, for edge

computing deployments and blockchain applications. These two special

purpose infrastructures have been introduced to address specific

requirements of ZDM use cases, such as the need for deploying solutions close

to the field (i.e. edge computing solutions) and the need for sharing and

validating ZDM related data across the supply chain (i.e. blockchain solutions).

• Reuse of partners’ technologies: Whenever possible, background

technologies and platforms of the partners have been reused. This is for

example the case with the interoperability solutions of the project, where a

middleware platform of one of the partners has been used for syntactic

interoperability, as well as with the semantic interoperability solutions where

digital models specified in other projects and extended in QU4LITY has been

used.

• Packaging of existing digital enablers: In-line with the presented

approach to integration, the partners have worked on the packaging of

existing digital enablers

The integration and interoperability solutions that are presented in this deliverable

are general and applicable to the various QU4LITY pilots and use cases. They are also

appropriate for supporting enablers and use cases that aligned to the data-driven

autonomous quality concept. This final version of the deliverable was destined to

present the actual implementation of the integrated enablers and their integration/

use in the QU4LITY pilot systems.

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 62 of 75

6 References
[1] Docker, Inc., “Docker Documentation”, available at:

https://docs.docker.com/, last accessed: March 2020

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 63 of 75

List of figures
Figure 1 QU4LITY Reference Architecture (Q-RA) (D2.12) 9

Figure 2 Valid XML message for endpoint ... 18

Figure 3 JSON messages format for endpoint client ... 18

Figure 4 WSO2 Converter API .. 18

Figure 5 Data Mapper .. 19

Figure 6 Input Message ... 20

Figure 7 Output Sample Message.. 20

Figure 8 Sampling Converter in Node-RED ... 21

Figure 9 Welcome view of event and alarms generated 35

Figure 10 XL-SIEM New agent addition .. 36

Figure 11 Entering user data .. 36

Figure 12 New type of events creation .. 36

Figure 13 XL-SIEM events .. 37

Figure 14XL-SIEM alarms .. 37

Figure 15: The QARMA algorithm used in the wrapper as a library 43

Figure 16 Overview of the functional architecture of trade space framework for

aircraft production system design ... 45

Figure 17 The roles of application ontology and 3D simulation in the trade space

framework ... 46

Figure 18 QU4LITY GitHub organization. .. 48

Figure 19 Overview of interoperability standards, protocols and frameworks for ZDM

 .. 50

Figure 20 Standards, protocols and frameworks for ZDM currently used by the pilots

 .. 51

Figure 21 RMPFQ-model elements and their interrelations 53

Figure 22 Structure of the QU4LITY Ontologies ... 54

Figure 23 Structure and main classes of QU4LITY domain ontology 55

Figure 24 Semantic-driven digital twin model for machining processes 56

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 64 of 75

List of tables
Table 1 List of the QU4LITY digital enablers ... 11

Table 2 DataCROP Docker Compose script ... 70

Table 3 QU4LITY Cloud Infrastructure Docker Compose script 71

Table 4 XL-SIEM Initialization ... 72

Table 5 XL-SIEM Json configuration .. 74

Table 6 XL-SIEM Docker launch .. 74

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 65 of 75

List of Abbreviations
AM Analytics orchestrator Manifest

AMQP Advanced Message Queuing Protocol

AP Analytics Processor

APD Analytics Processor Definition

APM Analytics Processor Manifest

AQ Autonomous Quality

CPS Cyber Physical Systems

CRUD Create-Read-Update-Delete

DApp Distributed Application

DataCROP Data Collection Routing & Processing

DDA Distributed Data Analytics

DES Discrete Event Simulation

DK Data Kind

DLT Distributed Ledger Technology

DSD Data Source Definition

DSM Data Source Manifest

DT Digital Twin

E2E End to End

EAE Edge Analytics Engine

EI Enterprise Integrator

ESB Enterprise Service Bus

HPC High Performance Computing

IOF Industrial Ontologies Foundry

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

JVM Java Virtual Machine

LDM Lightweight Digital Models

ML Machine Learning

OS Open Source

PL Private Ledgers

QA Quality Assessment

QCH Quality Clearing House

QCH Quality Clearing House

RA Reference Architecture

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

RUL Remaining Useful Life

SID Secure Identity Directory

SIEM Security Information and Event Management

SIEM Security Information and Event Management

SMB Secure Messaging Board

SPT Security Privacy and Trust

VCL Value Chain Ledger

VM Virtual Machine

WSO2 Web Services Oxygenated 2

XML eXtensible Markup Language

YAML Ain't Markup Language

ZDM Zero Defect Manufacturing

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 66 of 75

Appendix I – Digital Enablers’ Docker Compose Scripts

DataCROP

docker-compose -f test.yml -p test up

version: '3.3'

services:

 analytics-dashboard:

 image: faredge/analytics-dashboard:1.0.1

 ports:

 - 8000:8000

 environment:

 NAME: 'FAR-EDGE Analytics Dashboard'

 NODE_ENV: development

 OPEN_API_FOR_ANALYTICS_BASE_URL: http://localhost:4444/api

 MODEL_REPOSITORY_BASE_URL: http://localhost:8888/api

 depends_on:

 - model-repository

 - open-api-for-analytics

 restart: on-failure:5

 cloud-storage:

 image: mongo:3.6.4

 ports:

 - 27017:27017

 volumes:

 - cloud-data:/data/db

 - ./data/cloud:/docker-entrypoint-initdb.d:ro

 restart: on-failure:5

 configuration:

 image: confluentinc/cp-zookeeper:5.0.0

 ports:

 - 2181:2181

 environment:

 ZOOKEEPER_CLIENT_PORT: 2181

 ZOOKEEPER_SERVER_ID: 42

 ZOOKEEPER_TICK_TIME: 2000

 restart: on-failure:5

 data-router-and-preprocessor:

 image: faredge/data-router-and-preprocessor:1.0.3

 ports:

 - 7777:7777

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 67 of 75

 environment:

 NAME: 'FAR-EDGE Data Router and Preprocessor'

 NODE_ENV: development

 LOG_LEVEL: debug

 API_BASE_URL: http://localhost:7777/api

 MAX_REQUEST_BODY_SIZE: 100

 MONGODB_HOST: edge-storage

 MONGODB_NAME: device-registry

 MONGODB_POOL_SIZE: 20

 MONGODB_PORT: 27017

 KAFKA_BROKER_HOST: streams

 KAFKA_BROKER_PORT: 9092

 MODEL_REPOSITORY_BASE_URL: http://model-repository:8888/api

 EDGE_GATEWAY_MAC_ADDRESS: E5-E5-B9-5C-45-10

 EDGE_GATEWAY_ID: befa2ec0-2e9b-4e97-ad0a-c9fe91c1b55c

 depends_on:

 - edge-storage

 - messages

 - model-repository

 - streams

 restart: on-failure:5

 edge-analytics-engine:

 image: faredge/edge-analytics-engine:1.0.3

 ports:

 - 9999:9999

 environment:

 NAME: 'FAR-EDGE Edge Analytics Engine'

 NODE_ENV: development

 LOG_LEVEL: debug

 API_BASE_URL: http://localhost:9999/api

 MAX_REQUEST_BODY_SIZE: 100

 MONGODB_HOST: edge-storage

 MONGODB_PORT: 27017

 MONGODB_NAME: analytics-storage

 MONGODB_POOL_SIZE: 20

 MODEL_REPOSITORY_BASE_URL: http://model-repository:8888/api

 DATA_ROUTER_AND_PREPROCESSOR_BASE_URL: http://data-router-and-

preprocessor:7777/api

 EDGE_GATEWAY_ID: befa2ec0-2e9b-4e97-ad0a-c9fe91c1b55c

 volumes:

 - ./processors:/processors:ro

 depends_on:

 - data-router-and-preprocessor

 - edge-storage

 - model-repository

 restart: on-failure:5

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 68 of 75

 edge-storage:

 image: mongo:3.6.4

 ports:

 - 27018:27017

 volumes:

 - edge-data:/data/db

 - ./data/edge:/docker-entrypoint-initdb.d:ro

 restart: on-failure:5

 message-echoer:

 image: aksakalli/mqtt-client:latest

 depends_on:

 - messages

 command: sub -h messages -t "#" -v

 restart: on-failure:5

 messages:

 image: eclipse-mosquitto:latest

 ports:

 - 1883:1883

 - 9001:9001

 volumes:

 - mosquitto-config:/mosquitto/config

 - mosquitto-data:/mosquitto/data

 - mosquitto-log:/mosquitto/log

 restart: on-failure:5

 model-repository:

 image: faredge/model-repository:1.0.3

 ports:

 - 8888:8888

 environment:

 NAME: 'FAR-EDGE Model Repository'

 NODE_ENV: development

 LOG_LEVEL: debug

 API_BASE_URL: http://localhost:8888/api

 MAX_REQUEST_BODY_SIZE: 100

 MONGODB_HOST: cloud-storage

 MONGODB_PORT: 27017

 MONGODB_NAME: model-storage

 MONGODB_POOL_SIZE: 20

 depends_on:

 - cloud-storage

 restart: on-failure:5

 open-api-for-analytics:

 image: faredge/open-api-for-analytics:1.0.3

 ports:

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 69 of 75

 - 4444:4444

 environment:

 NAME: 'FAR-EDGE Open API for Analytics'

 NODE_ENV: development

 LOG_LEVEL: debug

 API_BASE_URL: http://localhost:4444/api

 MAX_REQUEST_BODY_SIZE: 100

 MONGODB_HOST: cloud-storage

 MONGODB_PORT: 27017

 MONGODB_NAME: analytics-storage

 MONGODB_POOL_SIZE: 20

 KAFKA_BROKER_HOST: streams

 KAFKA_BROKER_PORT: 9092

 MODEL_REPOSITORY_BASE_URL: http://model-repository:8888/api

 depends_on:

 - cloud-storage

 - model-repository

 - streams

 restart: on-failure:5

 random-data-publisher:

 image: faredge/mqtt-random-data-publisher:1.0.3

 environment:

 NAME: 'MQTT Random Data Publisher'

 NODE_ENV: development

 LOG_LEVEL: debug

 MQTT_BROKER_URL: mqtt://messages:1883

 MQTT_TOPIC: bob/temperature

 MIN_VALUE: 35

 MAX_VALUE: 42

 VALUE_INTERVAL: 10

 depends_on:

 - messages

 restart: on-failure:5

 streams:

 image: confluentinc/cp-enterprise-kafka:5.0.0

 ports:

 - 9092:9092

 - 29092:29092

 environment:

 KAFKA_BROKER_ID: 23

 KAFKA_ZOOKEEPER_CONNECT: 'configuration:2181'

 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP:

PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT

 KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT

 KAFKA_ADVERTISED_LISTENERS:

PLAINTEXT://streams:9092,PLAINTEXT_HOST://localhost:29092

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 70 of 75

 KAFKA_BROKER_RACK: r1

 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

 KAFKA_DELETE_TOPIC_ENABLE: 'true'

 KAFKA_AUTO_CREATE_TOPICS_ENABLE: 'true'

 KAFKA_JMX_PORT: 9991

 depends_on:

 - configuration

 restart: on-failure:5

volumes:

 cloud-data:

 edge-data:

 mosquitto-config:

 mosquitto-data:

 mosquitto-log:

Table 2 DataCROP Docker Compose script

Cloud Infrastructure

version: "3"

services:

 nginx:

 hostname: nginx

 image: nginx:latest

 networks:

 - hostnet

 ports:

 - "8080:80"

 depends_on:

 - qu4lity_cloud_bridge

 volumes:

 - ./nginx_conf/.htpasswd:/etc/nginx/.htpasswd

 - ./nginx_conf/nginx.conf:/etc/nginx/nginx.conf

 qu4lity_cloud_bridge:

 hostname: qu4lity_cloud_bridge

 image: node:14

 networks:

 - hostnet

 expose:

 - "9000"

 user: "node"

 working_dir: /home/node/app

 depends_on:

 - mpfq_mariadb

 environment:

 - NODE_ENV=production

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 71 of 75

 - PORT=9000

 - MPFQ_MARIADB_HOST=mpfq_mariadb

 - MPFQ_MARIADB_PORT=3306

 - MPFQ_MARIADB_DB=whr_mpfq_relational

 - MPFQ_MARIADB_USER=root

 - MPFQ_MARIADB_PASSWORD=r00t

 volumes:

 - ./node_conf/qu4lity-cloud-bridge:/home/node/app

 command: "npm start"

 mpfq_mariadb:

 hostname: mpfq_mariadb

 image: mariadb:latest

 networks:

 - hostnet

 ports:

 - "3306:3306"

 volumes:

 - container-volume:/var/lib/mysql

 - ./mariadb_conf:/docker-entrypoint-initdb.d/

 environment:

 - MYSQL_ROOT_PASSWORD=r00t

volumes:

 container-volume:

networks:

 hostnet:

Table 3 QU4LITY Cloud Infrastructure Docker Compose script

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 72 of 75

Appendix II – Native Installation Scripts

XL-SIEM

Step A:

echo "Copy json" >> $USER_PATH/init.log

cp /mnt/*.json $USER_PATH/scenariolayout.json

echo "Loading data " >> $USER_PATH/init.log

python3 init_citef.py

sleep 1200

echo "Launching Dockers" >> $USER_PATH/init.log

/home/cw_atos/reset.sh

Table 4 XL-SIEM Initialization

Step B:

from pathlib import Path

import json

import logging

web = "/home/cw_atos/dashboard/docker/web/context/config.conf"

topology = "/home/cw_atos/topology/docker/storm/context/conf/XL-SIEM.conf"

agent = "/home/cw_atos/dashboard/docker/mariadb/sql/data/04-agents.sql"

SCENARIO_CONFIGURATION = "/home/cw_atos/scenariolayout.json"

RABBITMQ_VM_TYPE = "MESSAGE_BROKER"

ADR_VM_TYPE = "ADR"

AGENT_VM_TYPE = "MONITORING_AGENT"

logger = logging.getLogger(__name__)

LOG_FORMAT = '%(asctime)s %(levelname)s: %(message)s - %(name)s -

%(funcName)s - %(lineno)d'

PARSER_LOG_FILE = "/home/cw_atos/parser_configurator.log"

logging.basicConfig(format=LOG_FORMAT, filename=PARSER_LOG_FILE,

filemode='w+', level=logging.INFO)

logger.warning('Loading Scenario Data ')

scenario_json_file = Path(SCENARIO_CONFIGURATION)

scenario_file = open(SCENARIO_CONFIGURATION, "r")

data_scenario = json.load(scenario_file)

def initialdata(type):

 machines = (vm for vm in data_scenario['virtualMachines'] if

vm['configuration'] and ('type' in vm['configuration'])

 and vm['configuration']["type"] == type)

 ip = None

 for vm in machines:

 logger.warning('Looking for the right machine')

 for nic in vm['nics']:

 if nic['isManagement']:

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 73 of 75

 ip = nic['ip']

 logger.warning('The IP of the ' + str(type) + ' is ' +

str(ip))

 return ip

ipadr = initialdata(ADR_VM_TYPE)

ipmb = initialdata(RABBITMQ_VM_TYPE)

ipagent = initialdata(AGENT_VM_TYPE)

logger.warning('Changing Configuration of the topology configuration ')

with open(topology, "r") as f:

 lines = f.readlines()

 f.close()

#print(lines)

logger.warning('Changing the database an MB ip ')

ddbb = 'databaseIP = ' + ipadr +'\n'

lines.insert(87, ddbb)

old_line = lines[88]

lines.remove(old_line)

mb = 'serverRabbitMQ = ' + ipmb +'\n'

lines.insert(15, mb)

old_line = lines[16]

lines.remove(old_line)

with open(topology, "w") as f:

 lines = "".join(lines)

 f.write(lines)

 f.close

logger.warning('Changing Configuration of the web ')

with open(web, "r") as f:

 web_lines = f.readlines()

 f.close()

ip_topology = 'ip=' + ipadr +'\n'

web_lines.insert(2, ip_topology)

old_line = web_lines[3]

web_lines.remove(old_line)

ip_ddbb = 'host=' + ipadr +'\n'

web_lines.insert(27, ip_ddbb)

old_line = web_lines[28]

web_lines.remove(old_line)

with open(web, "w") as f:

 web_lines = "".join(web_lines)

 f.write(web_lines)

 f.close

logger.warning('Adding the Cyber-Agent ')

with open(agent, "r") as f:

 agent_lines = f.readlines()

 f.close()

insert_agent = agent_lines[3]

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 74 of 75

a = insert_agent.split('\"')

a[3] = ipagent

insert_newagent = '\"'.join(a)

agent_lines.remove(insert_agent)

agent_lines.insert(3, insert_newagent)

with open(agent, "w") as f:

 agent_lines = "".join(agent_lines)

 f.write(agent_lines)

 f.close

Table 5 XL-SIEM Json configuration

Step C:

echo "Launching Dockers" >> $USER_PATH/init.log

 cd /home/cw_atos/dashboard/docker/mariadb

 ./install.sh -s=cyber -p=3306

 /home/cw_atos/dashboard/docker/web/install.sh -s=atos -p=8080

 cd /home/cw_atos/topology/docker/storm

 docker-compose -f storm.yml up -d

Table 6 XL-SIEM Docker launch

 Project QU4LITY - Digital Reality in Zero Defect Manufacturing

Title Library of Integrated, Interoperable
Digital Enablers (Final Version)

Date 30/07/2021

Del. Code D3.14 Diss. Level PU

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 75 of 75

Partners:

