
 

  

www.QU4LITY-project.eu 
Co-funded by the Horizon 2020 Programme 
of the European Union 

 

DIGITAL MANUFACTURING PLATFORMS FOR 
CONNECTED SMART FACTORIES 

D5.8 QU4LITY Digital Platforms Open APIs (Final Version) 

Deliverable Id : D5.8 

Deliverable Name : QU4LITY Digital Platforms 

Open APIs (Final Version) 

Status : Final 

Dissemination Level : PU 

Due date of deliverable 

: 

30/09/2021 

Actual submission date : 12/11/2021 

Work Package : WP5 

Organization name of 

lead contractor for this 

deliverable : 

Synesis - Società 

Consortile a Responsabilità 

Limitata (SYN) 

Author(s): A. Chiodi (SYN) 

Partner(s) contributing : G. Montalbano (SYN)  

F. Larrinaga (MGEP-MON)  

S. Trakic (NXT)  

S. Scholze (ATB)  

D. Pasanisi (IMECH)  

J. H. Simarro (ATOS)  

E. Urkia (DAN-IDEKO)  

I. Metaxa (ATLANTIS)  

N. Weinert (SIEMENS)  

A. Marguglio (ENG)  

J. H. Simarro (ATOS) 

 
Abstract: The deliverable presents the final details and 

considerations about the specification and the 

implementation of Open APIs in the context of the 

Qu4lity project. 

Ref. Ares(2021)6970848 - 12/11/2021



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 2 of 60 

 

Contents 

HISTORY ...................................................................................................... 3 

1. Executive Summary ................................................................................. 4 

2. Introduction ............................................................................................ 5 

3. How T5.4 fits in the QU4LITY Vision for AQ ................................................. 7 

4. Characteristics of interfaces and API used in ZDM ........................................ 9 

5. APIs supported by the technologies of QU4LITY partners ............................. 14 

UMI ......................................................................................................... 14 

IMECH MQTT-based API ............................................................................. 16 

Savvy M2CAPI ........................................................................................... 17 

Edge OPC-UA ............................................................................................ 19 

ATB Kafka-based API ................................................................................. 20 

ATB MQTT-based API ................................................................................. 23 

ATB REST API ........................................................................................... 24 

NXT FBDLL ............................................................................................... 25 

nxtSTUDIO #Develop Add-in ....................................................................... 27 

ATLANTIS REST API#1 (Prediction RUL Component) ...................................... 29 

ATLANTIS REST API#2 (DSS Component) .................................................... 32 

SYN MQTT-based API ................................................................................. 34 

ATOS MQTT-based API ............................................................................... 36 

ATOS REST API ......................................................................................... 37 

ATOS OPC UA API ...................................................................................... 39 

6. Abstract API specification ........................................................................ 41 

7. Tools to enable interoperability ................................................................ 45 

8. Proof of Concept implementation .............................................................. 46 

9. Conclusions ........................................................................................... 56 

10. References ......................................................................................... 57 

List of figures ............................................................................................... 58 

List of Abbreviations ..................................................................................... 59 

Partners: ..................................................................................................... 60 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 3 of 60 

 

HISTORY 
 

Version Date Modification reason Modified by 

0.0 31/5/2021 Revision of content from version 1 
Giuseppe 

Montalbano (SYN) 

0.1 17/9/2021 General revision 
Andrea Chiodi 

(SYN) 

0.2 21/9/2021 Analysis of API standard 
Andrea Chiodi 

(SYN) 

0.3 10/10/2020 Setup of the proof-of-concept pilot 
Andrea Chiodi 

(SYN) 

0.4 29/10/2020 Final version for reviewing 
Andrea Chiodi 

(SYN) 

1.0 12/11/2021 Final version for submitting 
Andrea Chiodi 

(SYN) 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 4 of 60 

 

1. Executive Summary 
This is the second of two documents aiming to report about the analysis and the 

outcomes that have progressed with the activities of T5.4 - Digital Platforms Open 

APIs and Process-Level Interoperability. 

This “final version” consolidates most of the contents presented in “version 1” of the 

same deliverable, adding further details and considerations about the specification 

and the implementation of Open APIs in the context of the Qu4lity project. Elements 

and concepts that have been relevant for the progress of the T5.4 activities have 

been maintained in the document in order to provide the necessary context for the 

discussion. 

Core part of T5.4 activities is the identification of the Open APIs that could enable 

the composition of the many different digital platforms and tools adopted in QU4LITY, 

to deploy applications suitable for ZDM processes. The aim of that task is to define 

the set of APIs that can support the interoperability between tools of different parties 

and enable the composition of different building blocks based on the specific 

requirements of the ZDM application to address. 

This report starts providing an overview about the general concept of API and then 

digs deep into some of the most relevant aspects that characterize an API. 

Interoperability between digital platforms, leveraging an API, can be realized at 

different levels.  

This report then highlights some of the key characteristics that needs to be 

considered in T5.4 to identify the set of APIs relevant for QU4LITY, providing an 

introduction to some communication protocol architectures, like for instance the 

service-oriented or REST architectural styles as well as the broker-centric 

architecture and mentioning a few of the most common protocols adopted in ZDM 

processes (MQTT, AMQP, OPC UA, HTTP, etc.). 

The portability and flexibility of an API is also characterized by the availability of 

formalisms that support their use and maintenance. In particular for the web 

services, the exploitation of specifications like the AsyncAPI Specification [1] and 

OpenAPI Specification (OAS) [2]  simplifies and makes more effective the use of 

APIs via both manual and automatic tools, and results an attractive characteristics to 

be considered for the identification of QU4LITY’s Open APIs. Such an approach has 

been further analyzed and discussed in this second version of the document. 

A possible approach was investigated in the previous version, which would enable 

the interoperability between tools despite their incompatibility with a specific API. 

This would be based on the adoption of translation tools aimed to “adapt” the 

communications based on different APIs. While such a development direction retains 

its validity, the present task adopted a more radical approach, based on the belief 

that an interoperability by-design is the necessary foundation to reach the foreseen 

level of ZDM quality that is the basis of the QU4LITY objectives. 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 5 of 60 

 

2. Introduction 
This document, D5.8 - QU4LITY Digital Platforms Open APIs (Final Version), describes 

the activities performed within the scope of task T5.4 and the achieved outcomes. 

The purpose of Task 5.4 is to provide the basis for data interoperability between 

technologies with the aim to enable implementation of Autonomous Quality (AQ) 

processes. Among these technologies, the digital platforms of the project partners 

are those of main interest for this task although the general aim is to achieve the 

broader generality for the Open APIs identified in QU4LITY in order to support the 

implementation of ZDM processes also leveraging the integration and enhancement 

of technologies developed by third parties. 

T5.4's first activity was to identify the APIs used and promoted by QU4LITY partners, 

as well as to research APIs that enable the integration of technologies and capabilities 

from various digital manufacturing platforms and digital enablers. 

 

 

Figure 1 Possible approach for integration of Engineering Environments 

A possible approach to enable the integration of different ZDM Orchestration 

Engineering Environments has been proposed by WP4 and described in D4.3 - 

Distributed Communication and Control Infrastructure (section 3.1). That approach 

is based on leveraging an orchestration environment to synchronize the several 

engineering tools that are needed during the design, deployment and operation of 

ZDM processes. In such a scenario, an orchestration environment based on the 

IEC61499 formalism would interact with the other tools via different interfaces and 

therefore APIs, both at design and at operation phase. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 6 of 60 

 

That proposed approach has been a first attempt to identify a composite framework 

for engineering and orchestration of ZDM processes leveraging the technologies 

platforms that are available in the QU4LITY consortium, and addressing the 

distributed communication and control infrastructure in the scope of WP4.  

Part of this report focuses on providing an overview of the concepts and aspects of 

relevance associated to the definition of Open APIs suitable for ZDM processes and 

on the APIs supported by some of the technologies of project partners. 

The overall structure of this document is as follows: 

• Section 2 introduces the overall document. 

• Section 3 presents the relations between T5.4 and other tasks of WP5, as well 

as with the overall QU4LITY vision. 

• Section 4 clarifies the concept of API and Open API and addresses the key 

aspects that characterize APIs, which has been considered in T5.4 to evaluate 

and identify the Open APIs for QU4LITY 

• Section 5 provides an overview of APIs currently supported by some of the 

technologies and tools provided by QU4LITY partners or that will be develop 

within the project. 

• Section 6 introduces the concept of Abstract API specification, to support 

interoperability by design. 

• Section 7 presents alternative approach to the interoperability issue. 

• Section 8 presents a Proof of Concept for the proposed Open API approach. 

• Section 9 draws some conclusions. 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 7 of 60 

 

3. How T5.4 fits in the QU4LITY Vision for AQ 
Task 5.4 is part of WP5 and as such shares the overall goal of enabling and fostering 

the implementation of Autonomous Quality, providing the means that support and 

improve the engineering, deploying and management of ZDM processes. 

The framework of Open Autonomous Quality Services Engineering and Processes 

promoted by QU4LITY and main development objective of WP5 should result as 

composition of different platforms. Task 5.4 is the task of WP5 that addresses the 

interoperability aspects between the technologies exploitable to implement the 

QU4LITY AQ paradigm and that focus on enabling the integration of those building 

blocks by leveraging Open APIs. 

 

Figure 2 QU4LITY Reference Architecture 

 

By definition, interoperability and interconnection topics regard the composability of 

more than one technology. In Task 5.4 scope we have to address the possible 

integration of different technologies, spanning at almost all the three higher levels in 

which the QU4LITY digital services are structured: Work cell/Production Line layer, 

Factory layer, and Enterprise/Ecosystem layer. 

The synergies with the other tasks of WP5 can be briefly described as follows, based 

on their specific goals:  

• T5.1 addresses the development of a Framework to support the specification 

and integration of human centric ZDM processes.  

• T5.2 mainly focuses on the customization and integration of simulation 

processes and digital twins to the multi-stage ZDM processes based on AQ.  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 8 of 60 

 

• T5.3 addresses the capability of digital platforms’ operations of being adaptive 

to changing conditions of the shop floor.  

• T5.5 addresses the enabling of autonomous data management operations by 

integration of the digital platforms to the open secure Industrial Data Space.  

• T5.6 focuses on the integration of functionalities from multiple platforms to 

enable an open and integrated service engineering approach.  

In general terms, Task 5.4 will support the enhancement of the project partners’ 

digital platforms to enable the composability of their systems with the other 

technologies of QU4LITY, towards the implementation of ZDM processes. 

The compatibility with Open APIs will enable not only the effective exploitation of the 

project partners’ digital platforms but also their enhancement and extension by third 

parties. 

The Open APIs identified in Task 5.4 represents also a mechanism through which the 

test and validation activities can be performed on the systems to evaluate their 

performance and to make validation activities. The results of Task 5.4 are therefore 

relevant also for the activities of WP6. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 9 of 60 

 

4. Characteristics of interfaces and API used in ZDM 
In general, when referring to APIs we can actually mean two different concepts: one 

is based on systems exposing data and operations, and the other one refers to 

language constructs or in the form of libraries/frameworks [3]. 

APIs refer to the interfaces that other software tools can access by using, in general, 

libraries that implement those interfaces, when the focus is on programming 

elements or the integration possibilities available at the programming code level. 

APIs are represented in Object Oriented Programming (OOP) languages by the 

classes that implement those interfaces. APIs are used by third parties to exploit, 

enhance, and/or expand the core program functionality since they are designed to 

allow external software modules outside the main section of the application exposing 

the API to communicate successfully. 

To ensure usability to third parties the interfaces and their implementations can be 

published as packages, where they are possibly bundled with documentation and 

sample implementations. 

API can also refer to a user interface that allows data and operations to flow between 

separate systems. In this context API refer to the interfacing mechanisms that allow 

distributed systems to interact by mean of a communication protocol. In this case, 

the API must provide for a well-defined and well-understood communication method 

between the systems that want to interact. 

Both these interpretation of APIs are relevant to enable the integration of different 

technologies and therefore T5.4 considers APIs belonging to both the categories as 

possible candidates for the Open APIs promoted in QU4LITY as enablers for 

interoperability. 

Considering that an API is mainly of interest for parties that aim to leverage that 

interface to interact and integrate additional functionalities to the tool that support 

such an API, it is worth differentiating APIs based on the accessibility level. Private 

APIs serve a specific set of stakeholders and are usually not exposed outside these 

specific parties. Usually they are leveraged within an organization to support the 

structuring and development of software tools/products. When the APIs are designed 

to enable third parties to leverage the interface for integration with other tools, they 

are commonly identified as Public APIs. Public APIs are open for consumption by 

interested parties but this does not mean that they are publicly available for free. 

Commonly, to describe an API that is publicly available to all the interested parties 

that wants to develop tools exploiting that interface, the API is tagged with the “open” 

adjective. Open APIs are therefore leveraged to promote the growing of developers 

that can have the possibility to extend the functionalities of applications based on 

those interfaces and to generate a larger interest and market opportunities on the 

technologies compliant with them. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 10 of 60 

 

It is worth to note that “open” does not implicitly means “free”. Any possible 

restriction to use is typically ruled by some license agreement, which is bundled with 

the library itself. 

To promote the interoperability of digital platforms exploitable for the implementation 

of ZDM processes, QU4LITY aims at assuring that all of them can be composed by 

means of Open APIs. The following section of this report describes many of the 

characteristics that can differentiate APIs and, as a consequence, the identification 

and selection of the set of Open APIs to be adopted in QU4LITY is not an immediate 

task.  

With the aim to support the development and diffusion of more and more Open APIs, 

in particular in the field of client-server services and broker-based interaction, some 

communities of developers started working on the implementation of specifications 

to facilitate the portability and maintainability of existent APIs, regardless their 

specific implementation details. Two of the most relevant results in this direction are 

the AsyncAPI specification [1], and the OpenAPI Specification (OAS) [2]. These 

standard will be better described in a subsequent section of this document. 

When a digital platform exposes a web service API that is based on this specification, 

it creates an advantageous condition that qualify it as an ideal candidate for 

supporting and implementing the Open APIs that QU4LITY is looking for.  

The use of APIs to enable integration of different tools and technologies is a 

commonly adopted approach in the field of digital solutions for manufacturing 

processes. APIs enable to integrate different tools in order to compose frameworks 

of digital platforms that can address the challenges of the ZDM processes. 

When referring to API as a mean to integrate tools at programming code level, one 

of the two possible interpretations as described in the previous section, their use in 

the context of ZDM processes is mainly exploited for the enhancement and extension 

of software features dedicated to the interconnection with other tools. 

Remote Procedure Call (RPC) [4] has been one of the first mechanism adopted to 

“transform” an API defined at programming code level into an API to enable data and 

operations flow, and their implementations are highly dependent on the programming 

language and runtime code used. gRPC [5] is a modern revision of that same 

approach, which try to overcome some limitations of the legacy RPC. APIs defined at 

programming code level can therefore be exploited to enhance the digital tools with 

communication interfaces and protocol stacks enabling the interaction with other 

systems via digital networks.  

An example of APIs of this type are the FBDLL and #Develop Add-in APIs described 

in the section 6 of this report. 

To satisfy the need of APIs that are independent from the specific programming 

language and/or runtime implementation, many tools and digital platforms adopt 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 11 of 60 

 

APIs of the second nature (communication protocol-based) and follows a Service-

Oriented architectural approach. 

Service-Oriented Architecture (SOA) is a term that has not a unique definition [6] 

but in general terms refers to a client-server design approach where a server entity 

exposes a set of services to other systems, which can be called by client entities to 

trigger data and operations flow. 

By means of communication protocol-based APIs different tools and digital platforms 

can interact with each other, enabling the implementation of highly powerful and 

flexible solutions providing digital services to address ZDM processes. The use of 

service-oriented interfaces makes the composability of the tools independent from 

the programming code details of each specific software application involved and limits 

the interoperability issues to the common understanding of the communication 

mechanism associated to a certain API. 

It is paramount, therefore, that APIs specify all the details needed to enable the 

correct exchange of data and provide the information needed their correct 

interpretation. 

While the SOA architecture is based on a client-server pattern, so it is designed for 

synchronous exchange of messages, the Broker-centric architecture follows the 

publisher / subscriber pattern and is more properly suitable for asynchronous 

dialogue, possibly extended to multicasting. Several use-cases implements such a 

pattern in the industrial context, where a distributed architecture, based on 

autonomous subsystems, is increasingly adopted. 

Generally APIs supported by tools suitable for ZDM processes leverage some kind of 

standard protocol (or stack of protocols) to exchange data over the network (like for 

instance TCP and UDP). Doing that, tools can exchange data by means of the 

common and well supported Internet Protocol (IP) networks and devices. More 

frequently the APIs use some kind of application protocol that add functionalities on 

top of the basic (TCP and UDP). MQTT [7] and AMQP [8] are for instance two 

messaging protocols that different technologies for ZDM exploit as part of their APIs 

to implement in effective way publish-subscribe communication architectures. 

To implement APIs that can provide a higher level of flexibility in the composability 

of technologies, many tools adopt the Representational State Transfer (REST) 

style. REST is an architectural style for services and defines a set of architectural 

constraints and agreements for implementing service-oriented interfaces. A service 

that is compliant with the REST constraints is said to be RESTful. A REST API can be 

implemented leveraging for the data delivery many different protocols, however HTTP 

and HTTPS are the most widely used. 

Whatever protocol and architectural style on which an API is based, to provide 

interoperability and enable the effective interconnection of different digital platforms 

and achieve the desired objectives of quality in ZDM, the APIs has not only to define 

the syntactic aspects of the messages exchanged via the network connections, but 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 12 of 60 

 

also it has to provide enough details for the semantic aspects needed to exploit the 

API and make the interaction between tools possible.  

In terms of syntactic aspects, the data formalism used to structure the information 

transferred via the communication protocol is another element that an API has to 

define clearly to enable the interaction between different tools. Commonly, in the 

context digital platforms and application tools for ZDM, they leverage standard 

formalisms, like JSON and XML. These standards alone, however, do not fully specify 

the type of messages exchanged through the API and therefore additional 

specifications should be part of the API. 

The semantic aspects are finally the set of information that enable other tools 

interact effectively via the API and exploit the services offered by means of that API. 

Specifications for the semantic interpretation of the messages exchanged via an API 

are therefore even more important than the syntactic ones.  

Moreover, the semantics of the exchanged messages is likely at the origin of 

technological and architectural decisions, which could involve, for instance, the choice 

between synchronous or asynchronous communication because of the lifecycle of the 

managed information, or the network protocol based on time-related restrictions.  

Among the standard protocols that are relevant for the implementation of ZDM 

processes, OPC UA (IEC 62541) [9] is one of the most interesting. The standard 

specify many aspects of the protocol to cover a large set of issues associated to the 

implementation of an effective and standardized interfacing mechanism between 

heterogeneous systems. The specification provides details about both the syntactic 

and semantic aspects associated to the use of that protocol, assuring a large extent 

of interoperability between tools that adopt that standard. This notwithstanding, 

some aspects are strictly dependent on the particular use that a system/tool makes 

of the API and therefore even OPC UA compliant APIs need to provide additional 

specifications if they want to be complete. 

Some efforts in this direction are also done by the OPC Foundation [10] trying to 

standardize also the information model exploitable in certain contexts (in robotics, 

in machine vision applications, in CNC system, etc.), however they are not covering 

the overall spectrum of information that can be encountered in ZDM applications and 

therefore customized APIs are very frequent. 

The availability of an API definition language is a possible criteria to evaluate an 

API. SOAP [11], for example, adopts the Web Services Description Language (WSDL) 

language to describe the syntax of the implemented functionalities. Other APIs adopt 

different dialects of IDL (Interface Definition Language) [12] which offer similar 

functionalities. These forms of structured documentation also enable several design-

time functionalities, like syntax checker, testing tools, generation of reference 

manuals, etc. The API description language could even extends beyond mere syntax, 

including information about the semantics of operations, based on some known and 

shared ontology. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 13 of 60 

 

While most of the existing definition languages are intended to extend a specific 

protocol, their last generation approach is moving toward a complete independence 

from any specific implementation. The mentioned AsyncAPI and OpenAPI 

specifications are example of such a trend. 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 14 of 60 

 

5. APIs supported by the technologies of QU4LITY partners 
The identification of the Open APIs to be supported and promoted by QU4LITY for 

the implementation of ZDM processes began with an analysis of the APIs currently 

supported by the technologies of the QU4LITY partners. Such analysis supported the 

progress of T5.4 on defining the most relevant aspects that needs to be addressed 

by the Open APIs suitable for ZDM. 

A first step toward the collection of details on the APIs possibly supported in QU4LITY 

has been the analysis of the technologies described in the IoT-Catalogue. The IoT-

Catalogue is a web-based catalogue for Internet-of-Things (IoT) solutions, available 

at www.iot-catalogue.com and described in D2.5. The general goal for the IoT-

Catalogue is to bring IoT users and technology providers together, from the domain 

needs to IoT products (and back) via validated solutions with components, assembly 

guides, and more.  

This list of interfaces supported by QU4LITY partners’ technologies is representative 

of the wide spectrum of interfaces that are available in the technologies suitable for 

implementation of ZDM processes. Some of them refer to the communication protocol 

on which they are based (for instance MQTT, OPC UA, AMQP, WebSocket, etc.) others 

refer to the software tools exploited for their implementation (Flink, Kafka, Spark, 

RabbitMQ, etc.). 

To achieve better understanding of those APIs a questionnaire has been circulated 

among the QU4LITY partners to collect more details. The questions to be answered 

aimed not only to collect more insight into the partners’ APIs but also to understand 

at which level of QU4LITY Reference Architecture (RA) functional view (D2.11 section 

5.2.4.1) a specific API can be exploited. 

The document containing the questionnaire circulated is hosted in the files repository 

of the project. As a result, the partner’s APIs are described in the following of this 

section. 

The integral description provided by the partner is available in the D5.7 deliverable, 

while it has been reduced in this document.  

UMI 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

M3MH 

Name of the partner UNIMETRIK 

Name of the 

interface/API 
UMI 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

http://www.iot-catalogue.com/


 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 15 of 60 

 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services  

Control Services x 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
x 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

UNIMETRIK aims to leverage this interface in the pilot 

where participates: GF 

It will be exploited to make for the connectivity between 

the Machine Tool and the M3MH software. 

 

The UMI (Universal Module Interface) interface is integrated in the smart factory of 

the Automotive Intelligence Centre. This API controls the connectivity of the M3MH 

and the Machine Tool. 

 

Figure 3 Unimetrik M3mh Communication 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 16 of 60 

 

IMECH MQTT-based API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Decision Support System for ZDM 

Name of the partner IMECH 

Name of the 

interface/API 
MQTT 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
X 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

X 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

IMECH aims to leverage this interface in WHR pilot case.  

 

The MQTT protocol enables the publication of the data predicted by data-driven model 

and allows visualization of quality information on innovative HMI. 

The data messages are packed in JSON format and it is possible to customize the 

structure and semantics of data based on the application needs, both on request and 

in response. 

 

Figure 4 Communication between MQTT Broker and Client 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 17 of 60 

 

The interface that IMECH is willing to adopt for the WHR pilot is mainly based on this 

standard protocol. The technology aims at providing an alarm based on the most 

important variables that can be measured in the WHR plant. The alarm should provide 

an indication about the possibility of producing a defective product. 

Savvy M2CAPI 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

DANOBAT DATA SYSTEM 

Name of the partner DAN 

Name of the 

interface/API 
Savvy M2CAPI 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability No 

Semantic interoperability No 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
X 

Pilot(s) where this 

interface will be 

exploited 

DANOBAT DIGITAL MACHINE 

 

Savvy M2CAPI is a REST API, which enables the automatic connection of third-parties 

to the Big Data environment managed by the Industrial Cloud platform of DANOBAT. 

Thanks to this API, different types of systems can consume data collected by the 

platform in an automated, secure, and efficient way. It operates over HTTPS protocol. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 18 of 60 

 

 

Figure 5Communication schema based on M2CAPI 

Representational state transfer (REST) is a software architectural style that 

defines a set of constraints to be used for creating Web services.  

By using a stateless protocol and standard operations, RESTful systems aim for fast 

performance, reliability, and the ability to grow by reusing components that can be 

managed and updated without affecting the system as a whole, even while it is 

running. 

In this RESTful Web service, requests made to a resource's URL will elicit a 

response with a payload formatted in HTML, XML or JSON. The response can confirm 

that some alteration has been made to the stored resource, and the response can 

provide hypertext links to other related resources or collections of resources. When 

HTTP is used, as is most common, the operations (HTTP methods) available are GET, 

HEAD, POST, PUT, PATCH, DELETE, CONNECT, OPTIONS and TRACE. 

The API design is based on REST, and it operates over HTTPS protocol. Each request 

contains all the necessary information to execute, so the server will never maintain 

a session for an API client; that is, each request will be treated independently and a 

user's identification will be born and die with every request. 

 

Figure 6 M2CAPI REST Topology 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 19 of 60 

 

The API has two types of requests: 

• Resource requests. Information about different Savvy Industrial Cloud 

resources: machines, indicators, locations, alarms, files, etc.. 

• Data retrieval / download requests  

o Data requests: historical machine indicators during a timeframe.  

o Data Alarm requests: historical machine alarm during a timeframe.  

o Machine streaming requests: subscribes the client to a machine data 

flow through a persistent connection. The API client will receive all 

indicator data sent from the machine to the cloud in real time. 

Edge OPC-UA 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

DANOBAT DATA SYSTEM 

Name of the partner DAN 

Name of the 

interface/API 
Edge OPC-UA 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

DANOBAT DIGITAL MACHINE. 

 

DAN has developed an API based on OPC-UA (IEC-62541) on Danobat gateway 

module, to abstract from the details of the low-level communication mechanisms 

implemented by the exploitation of the DANOBAT DATA SYSTEM. The set of 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 20 of 60 

 

functionalities offered by that API enables to implement flexible and effective CPS 

data collection mechanisms. 

The OPC UA servers are implemented on the IoT gateways each machine following 

the IEC 62541 standard, allowing to get the maximum data gathering speed, as the 

OPC UA servers are implemented using the binary protocol.  

The binary protocol offers the best performance/least overhead, takes minimum 

resources (no XML Parser, SOAP and HTTP required, which is important for embedded 

devices), offers best interoperability (binary is explicitly specified and allows fewer 

degrees of freedom during implementation) and uses a single arbitrarily choosable 

TCP port for communication easing tunneling or easy enablement through a firewall. 

The OPC UA server uses the server/client message exchange mechanism.  

The implementation of each OPC UA server is automatically configured, set and 

deployed for every corresponding machine, with a unique Information Model, 

Moreover, the deployment and managing of the OPC UA server can be directly done 

in Danobat Data System Cloud. The information Model implemented in the OPC UA 

server consist of a set of folders and variables that represent the machine(s) 

connected to the IoT gateway.  

ATB Kafka-based API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Context Extractor & Device Centric Context Model 

Name of the partner ATB 

Name of the 

interface/API 
Kafka 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
X 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Engineering and Planning 

Services 
X 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 21 of 60 

 

Enterprise/ 

Ecosystem 

layer 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

Continental 

 

The technology developed by ATB is composed of different modules. 

The Context Extractor is a generic solution for extracting current context from 

monitored data. The Context Extractor is communicating to its outside via to 

components, the Context (System) Monitor and the “Context Provision”.  

The objective of the context monitoring component is to receive raw data and 

provide aggregated context data. It is a generic solution for the monitoring data 

sources and customisable for different communication protocols and data structures. 

It enables also data pre-processing or data aggregation. 

The following Figures shows the conceptual architecture of the Context Awareness 

and Context Monitoring modules. 

 

Figure 7 Conceptual Context Awareness Architecture 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 22 of 60 

 

 

Figure 8 Conceptual Context Monitoring Architecture 

The objective of the context extraction and provision component is to identify the 

context of products/machines, production processes or specified systems (e.g. legacy 

systems) and to provide it for further use to other modules or external systems. The 

following Figure shows the conceptual architecture for the Context Extraction module. 

 

Figure 9 Conceptual Situation Determination Architecture 

For both module several possibilities to communicate with external systems are 

available. 

Kafka is used twofold by the Context Extractor module: as in input for the Context 

Monitoring and as an output for the Context Provisioning module. 

The Context Monitoring is able to use an interface to the distributed messaging 

system Kafka to retrieve information from the external systems. Since the 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 23 of 60 

 

communication channel is a Kafka node/cluster every service which wants to use this 

channel has to subscribe to a specific topic in order to get the relevant information.  

The Context Provision is able to use an interface to the distributed messaging system 

Kafka to publish the identified context for usage by other services/systems. 

The data formats for the Kafka topics to be exchange between Context Extractor 

modules and external systems are based on JSON standard. In order to monitor an 

external system via the Context Monitoring, the data which will be monitored via 

Kafka has to be defined case by case. Also the data format of the Kafka topic for 

provisioning of identified context has to be defined case by case depending on the 

service to which the service will be send. 

ATB MQTT-based API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Context Extractor & Device Centric Context Model 

Name of the partner ATB 

Name of the 

interface/API 
MQTT 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
X 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
X 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

Continental 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 24 of 60 

 

This API is part of the Context Extractor & Device Centric Context Model that is 

introduced in section “ATB Kafka-based API”. As previously mentioned, different APIs 

are supported and this section provides some details about the MQTT API. 

MQTT can be used twofold by the Context Extractor module: as in input for the 

Context Monitoring and as an output for the Context Provisioning module. 

The Context Monitoring is able to use an interface to the distributed messaging 

system MQT to retrieve information from the external systems, specifically IoT 

devices. The Context Provision is able to use an interface to the MQTT messaging 

system to publish the identified context for usage by other services/systems. 

The data formats for the MQTT topics to be exchange between Context Extractor 

modules and external systems are based on JSON standard. 

In order to monitor an external system via the Context Monitoring, the data which 

will be monitored via MQTT has to be defined case by case. Also the data format of 

the MQTT topic for provisioning of identified context has to be defined case by case 

depending on the service to which the service will be send. 

For an example of the data format, please take a look at the Context Extractors Kafka 

API described in section “ATB Kafka-based API”. 

ATB REST API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Context Extractor & Device Centric Context Model 

Name of the partner ATB 

Name of the 

interface/API 
REST 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
X 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 25 of 60 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
X 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

Continental 

 

This API is part of the Context Extractor & Device Centric Context Model that is 

introduced in section “ATB Kafka-based API”. As previously mentioned, different APIs 

are supported and this section provides some details about the REST API. 

REST is used twofold by the Context Extractor module: as in input for the Context 

Monitoring and as an output for the Context Provisioning module. 

The Context Monitoring is able to use REST APIs from the external systems to monitor 

them. The Context Provision is able to provide identified context via a REST API and 

using this API other external systems can get current identified context. 

The data formats for the REST API topics to be exchange between Context Extractor 

modules and external systems are based on JSON standard. 

In order to monitor an external system via the Context Monitoring, the data which 

will be monitored via a REST API has to be defined case by case. Also the data format 

of the REST API topic for provisioning of identified context has to be defined case by 

case depending on the service to which the service will be send. 

For an example of the data format, please take a look at the Context Extractors Kafka 

API described in section “ATB Kafka-based API”. 

NXT FBDLL 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

nxtSTUDIO Engineering Tool 

Name of the partner NXT 

Name of the 

interface/API 
FBDLL 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 
Data-driven Modelling and 

Learning Services 
 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 26 of 60 

 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

NXT & ASTI use case  

 

The FB_DLL function block implements an interface between a FB and arbitrary 

functions residing in a dynamically loaded library. It is a generic function block which 

means that the count of event ports and data ports can be defined. 

It provides the possibility to implement basic or service IEC 61499 function blocks in 

a custom programming language that are compiled in a dynamical loadable library 

(DLL). The goal of this FB is to include external code written in a custom programming 

language into an IEC 61499 application. 

More than one instance of the Generic DLL function block (FB_DLL) can be 

instantiated in an IEC 61499 application and the parameters provided as input to 

those FBs are exploited to select the appropriate DLL. All the FB_DLL instances are 

characterized by an INIT input event that is used to load the DLL: in particular, when 

the INIT event of any FB_DLL is received for the first time, the associated DLL is 

loaded and the IEC 61499 runtime registers the function block with that DLL. 

Furthermore, if the constructor is implemented in the custom code, than it is run 

afterward. 

To leverage this flexible customization mechanism for implementing distributed 

automation applications, the custom code has to expose a data structure whose 

specification is detailed in the nxtControl’s documentation material. That interfacing 

structure defines different elements that characterize the generic DLL function block, 

like: 

• the number of input and output events; 

• the number of data values that are associated to the input and output events; 

• the data type associated to data values. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 27 of 60 

 

 

Figure 10 Usage of generic DLL FB in an application 

The previous Figure shows the usage of the generic DLL function block to implement 

the MQTT protocol. To be more precise this example shows the implementation of 

the MQTT client publisher. 

All the relevant data (Broker IP Address, Broker Port, Client ID, Publish Topic and 

Payload) needed to establish a connection with the MQTT broker and to publish a 

message on a topic are provided via the input variables of the DLL FB. The output 

variables provide the status of the message. 

This is just one example on how a generic DLL function block can be used to 

implement a protocol and to provide interoperability between different technologies. 

nxtSTUDIO #Develop Add-in 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

nxtSTUDIO Engineering Tool 

Name of the partner NXT 

Name of the 

interface/API 
#Develop Add-in 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability No 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
X 

Digital Twin and Planning 

Services 
 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 28 of 60 

 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
X 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

Currently not used in any Pilot or Use case 

 

SharpDevelop (also styled as #Develop or #D) is a free and open-source integrated 

development environment (IDE) for the .NET Framework, Mono, Gtk# and Glade# 

platforms. It supports development in C#, Visual Basic .NET, Boo, F#, IronPython 

and IronRuby programming languages.  

Within a previous EU research project (Daedalus), one of the activities was to 

integrate Virtual commissioning in the nxtStudio leveraging the existing IEC61499 

technology to establish real-time communication with a shop floor digital twin 

counterpart. This was realized by using the #Develop Add-In concept to create a 

plugin in the nxtStudio. 

From the architecture point of view, the plugin for the Virtual commissioning hosts 

the implementation of the GRPC client, which serves as a communication protocol 

between two engineering environments. 

 

Figure 11 Communication between IEC61499 and simulation environment 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 29 of 60 

 

 

ATLANTIS REST API#1 (Prediction RUL Component) 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Prediction of defects based on assets deterioration rate 

Name of the partner ATLANTIS 

Name of the 

interface/API 
REST APIs – GET, POST requests 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services  

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
X 

Pilot(s) where this 

interface will be 

exploited 

MONDRA-1, DANOBAT 

 

This API enables the integration of Prediction component with DSS component and 

other AI components. It allows the results of the Prediction component to be exposed 

to partners who need them. Especially, it exposes them to the DSS, which can than 

apply rules and trigger responses based on the prediction of failures and remaining 

useful life estimations. In particular, the goal of this interface is to enable the: 

• Identification of deterioration for asset’s condition parameters. 

• Correlation of identified deteriorations. 

• Rising of alarms for detected / predicted conditions. 

The data messages are packed in JSON format and it is possible to customize the 

structure and semantics of data based on the application needs. The goal is to make 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 30 of 60 

 

results of RUL Prediction available to other components that need them, using an 

agreed upon schema that consists of four variables. 

The tool expected to be integrated by means of this interface is the Input storage 

subcomponent of the DSS component.  

Main Inputs 

• Real-time asset’s conditions  

• Historical data from external systems 

• Maintenance logs, production information related to produced product  

Main Outputs 

• Calculation of the deterioration rate of the monitored assets 

Functionalities 

• Analysis of asset’s conditions in real-time 

• Detection of emerging failures  

• Prediction of future failures  

• Incorporation of complex event processing and trend analysis  

• Identification of deterioration for asset’s condition parameters 

• Correlation of identified deteriorations (to be examined, if possible) 

The diagram below is applicable for both APIs of ATLAS, as it incorporates 

functionalities from both digital technologies. It should be mentioned that this is the 

generalized diagram of ATLAS solutions. The exact implementation for the QU4LITY 

project may vary a bit, depending on the needs of the pilots and the project’s 

specifications. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 31 of 60 

 

 

Figure 12 ATLAS Component Diagram and Architecture 

 

All aspects of the API are based on a stateless client/server REST protocol and HTTP 

protocol. 

Both http and https are supported. For https protocol bearer token will be used. 

The syntactic definition of the API is based on the JSON format. When we version 

the Media Type and extend the language, we go through Content Negotiation based 

on the header. The REST API would make use of custom vendor MIME media types 

instead of generic media types, such as application/json. We are going to version 

these media types instead of the URIs. 

The client makes no assumptions about the structure of the response beyond what 

is defined in the media type. This is why generic media types are not ideal. These do 

not provide enough semantic information and force the consumer REST API client to 

require additional hints to process the actual representation of the resource. 

This is a component for which ATLAS holds the IPR, so restrictions may apply to the 

level of information and the extent that it can be shared. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 32 of 60 

 

 

ATLANTIS REST API#2 (DSS Component) 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

Decision Support System (DSS) and Strategies for ZDM 

Name of the partner ATLANTIS 

Name of the 

interface/API 
REST APIs – GET, POST requests 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services  

Control Services  

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
X 

Pilot(s) where this 

interface will be 

exploited 

MONDRA-1, DANOBAT, PRIMA 

 

This API enables the integration of defect prediction/detection sources of the pilots 

with the DSS and other AI subsystems. It allows the outcomes of the DSS to be 

communicated to systems that may need them, such as the feedback engine or to 

trigger Strategies for ZDM. 

In particular, the goal of this interface is to enable the: 

• Interfacing with the specific defect prediction/detection sources of the pilots. 

• Filtering out false alarms. 

DSS can be considered an Artificial Intelligence (AI) subsystem which manages zero-

defect processes, by: 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 33 of 60 

 

• Filtering out false alarms originated from predictive analytics (i.e. from 

Condition Monitoring and sensorial/inspection data assessed vs tolerance 

bands, being processed through the defect prediction and detection layers). 

• Incorporating semantic rules and a rule-based engine to cope with 

detected/predicted defects identified from corroborating sources (e.g. 

different sources of defect detection). 

• Deciding the mitigation actions to cope with defects and triggering the 

activation of the appropriate ZDM Strategy(ies). 

• Providing recommendations for performance improvements, based on KPI 

assessment and dashboards (e.g. scrap level, rework level, throughput, FAR, 

Precision in warning signals, defects per stage, etc, depending on availability 

of pilots’ data). 

Main Inputs 

• Detected/predicted failures  

• Tolerance bands 

• Feedback from the shopfloor, via the Notification subsystem. 

Main Outputs 

• Filtering out false alarms originated from predictive analytics 

• Recommendation for actions predicted failures, detected defects, 

maintenance and performance improvements 

• KPIs 

• Triggering/Activation of the appropriate ZDM Strategy(ies)   

• Notifications to personnel. 

Functionalities 

• Management of zero-defect processes 

• Filtering out false alarms originated from predictive analytics 

• Incorporating semantic rules and rule-based engine 

• Identification of detected/predicted failures 

• Suggestions for mitigation actions to cope with failures  

• Triggering/Activation of the appropriate ZDM Strategy(ies) 

• KPIs mechanism 

DSS will provide recommendations based on the strategies will be provided. 

Continuously incoming data might be used to train the system’s algorithms and 

improve its performance. A database will be used for storing the recommendations 

feedback, which allows data storage and retrieval for training purposes. The DSS 

database will also include the implemented strategies outputs and will exploit them 

in the machine learning processes of the system. 

The data messages are packed in JSON format and it is possible to customize the 

structure and semantics of data based on the application needs. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 34 of 60 

 

All aspects of the API are based on a stateless client/server REST protocol and HTTP 

protocol. Both http and https are supported. For https protocol bearer token will be 

used. 

The syntactic definition of the API is based on the JSON format. When we version 

the Media Type and extend the language, we go through Content Negotiation based 

on the header. The REST API would make use of custom vendor MIME media types 

instead of generic media types, such as application/json. We are going to version 

these media types instead of the URIs. 

The client makes no assumptions about the structure of the response beyond what 

is defined in the media type. This is why generic media types are not ideal. These do 

not provide enough semantic information and force the consumer REST API client to 

require additional hints to process the actual representation of the resource. 

This is a component for which ATLAS holds the IPR, so restrictions may apply to the 

level of information and the extent that it can be shared. 

SYN MQTT-based API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

MQTT-based data monitoring tool 

Name of the partner SYN 

Name of the 

interface/API 
MQTT 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

X 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 35 of 60 

 

Pilot(s) where this 

interface will be 

exploited 

SYN aims to leverage this interface in the pilots where 

participates: PRIMA and RIASTONE. 

 

MQTT (MQ Telemetry Transport) is an open OASIS and ISO standard (ISO/IEC PRF 

20922). lightweight, publish-subscribe network protocol that transports messages 

between devices. It is a publish / subscribe protocol, extremely simple and 

lightweight messaging protocol, designed for constrained devices and low-bandwidth, 

high-latency or unreliable networks. The design principles are to minimise network 

bandwidth and device resource requirements whilst also attempting to ensure 

reliability and some degree of assurance of delivery. These principles also turn out to 

make the protocol ideal of the emerging “machine-to-machine” (M2M) or “Internet 

of Things” world of connected devices, and for mobile applications where bandwidth 

and battery power are at a premium [7]. 

The protocol usually runs over TCP/IP; however, any network protocol that provides 

ordered, lossless, bi-directional connections can support MQTT. It is designed for 

connections with remote locations where a "small code footprint" is required or the 

network bandwidth is limited. 

The SYN MQTT protocol stack is integrated in a data monitoring tool composed of 

different modules, including databases (e.g. InfluxDB) and visualization tools (e.g. 

Grafana) represented in the following figure. 

 

Figure 13 Monitoring Architecture exploiting the MQTT API 

 

The data messages are packed in JSON format and it is possible to customize the 

structure and semantics of data based on the application needs. 

Part of the communication within the modules is implemented by means of other 

proprietary protocols based on TCP/IP. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 36 of 60 

 

ATOS MQTT-based API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

MQTT- MQ Telemetry Transport 

Name of the partner ATOS 

Name of the 

interface/API 
MQTT 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

ATOS aims to leverage this interface in the pilot where 

it participates: CONTI. 

 

The MQTT protocol is used by MASAI to receive data from IoT based data sources. 

The figure below represents how this protocol is used. As it can be derived from the 

figure, the MQTT broker is the central component to facilitate the communication 

between devices and MASAI. 

 

Figure 14 Communication schema based on MQTT API 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 37 of 60 

 

The architecture of MQTT follows the publish/subscribe pattern, using topics to send 

and receive data. In this regard, when a new device MASAI is registered in MASAI, 

the necessary topics for data publishing and subscribing are created. Each device, in 

MASAI, has a unique identifier, and so the topics are specific for the device. For 

example, if a device with ID device1 is created in MASAI, the following topics will be 

created in the MQTT broker: 

"/ATOS/device1/attributes/+" and "/ATOS/device1/attributes".  

The device will publish the data into the topic while the consumer will be subscribed 

to any change occurred in the topic. MASAI expects to receive data in JSON format, 

for example:  

'{"temperature":"24.4","humidity":"55.0", "type":"office"}'.  

Considering the data model used internally in MASAI, it is important to clarify that 

MASAI is a FIWARE based component, and so it internally uses the NGSI language 

to describe devices. As the scope of this document is not to describe deeply the data 

formats used, more information about how devices are described using the NGSI is 

available at on FIWARE website [13]. 

ATOS REST API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

REST - Representational state transfer 

Name of the partner ATOS 

Name of the 

interface/API 
REST 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Engineering and Planning 

Services 
 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 38 of 60 

 

Enterprise/ 

Ecosystem 

layer 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

ATOS aims to leverage this interface in the pilot where 

it participates: CONTI. 

 

Among its functionalities, MASAI offers devices virtualization and data handling 

functionalities. But before those capabilities are ready to be used, some configuration 

needs to be performed in MASAI. To receive the necessary configuration, in form of 

configuration files, MASAI offers REST interfaces. Figure below presents a high-level 

view of the usage of REST interfaces. 

 

Figure 15 Communication schema based on REST API 

Representational state transfer (REST) is a software architectural style that 

defines a set of constraints to be used for creating Web services. By using a stateless 

protocol and standard operations, RESTful systems aim for fast performance, 

reliability, and the ability to grow by reusing components that can be managed and 

updated without affecting the system as a whole, even while it is running. 

By using a stateless protocol and standard operations, RESTful systems aim for fast 

performance, reliability, and the ability to grow by reusing components that can be 

managed and updated without affecting the system as a whole, even while it is 

running. 

In a RESTful Web service, requests made to a resource's URI will elicit a response 

with a payload formatted in HTML, XML, JSON, or some other format. The response 

can confirm that some alteration has been made to the stored resource, and the 

response can provide hypertext links to other related resources or collections of 

resources. When HTTP is used, as is most common, the operations (HTTP methods) 

available are GET, HEAD, POST, PUT, PATCH, DELETE, CONNECT, OPTIONS and 

TRACE. 

The payload to register data handling functionalities is mainly composed by three 

main groups: 

• Incoming events: represents the incoming data in form of events. 

• Outgoing events: outgoing events are created when incoming events match 

the business rules defined at the statements. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 39 of 60 

 

• Statements: represents the business rules to handle the data. 

ATOS OPC UA API 

Name of the 

technology/ tool that 

uses this interface/ 

protocol/ API 

OPC UA - OPC Unified Architecture 

Name of the partner ATOS 

Name of the 

interface/API 
OPC UA 

This interface provides 

(ref. D2.7 page 23) 

Technical interoperability Yes 

Syntactic interoperability Yes 

Semantic interoperability Yes 

At which level of 

QU4LITY RA functional 

view (D2.11 section 

5.2.4.1) your tool is 

located 

Workcell/ 

Production Line 

layer 

IoT Automation Services X 

Control Services X 

Factory layer 

Data-driven Modelling and 

Learning Services 
 

Digital Twin and Planning 

Services 
 

Simulation and Human-

centric Visualization 

Services 

 

Enterprise/ 

Ecosystem 

layer 

Engineering and Planning 

Services 
 

Collaboration, Business and 

Operation Services 
 

Pilot(s) where this 

interface will be 

exploited 

ATOS aims to leverage this interface in the pilot where 

it participates: CONTI. 

 

MASAI offers an OPC UA client capable to interoperate with OPC UA servers. The 

figure below shows an approach to that type of communication. 

 

Figure 16 Communication schema based on OPC UA API 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 40 of 60 

 

 

OPC Unified Architecture (OPC UA) is a machine to machine communication protocol 

for industrial automation developed by the OPC Foundation. Distinguishing 

characteristics are: 

• Focus on communicating with industrial equipment and systems for data 

collection and control 

• Open - freely available and implementable under GPL 2.0 license  

• Cross-platform - not tied to one operating system or programming language 

• Service-oriented architecture (SOA) 

• Inherent complexity - specification of 1250 pages in 14 documents 

• Robust security 

• Integral information model, which is the foundation of the infrastructure 

necessary for information integration where vendors and organizations can 

model their complex data into an OPC UA namespace to take advantage of 

the rich service-oriented architecture of OPC UA. There are over 35 

collaborations with the OPC Foundation currently. Key industries include 

pharmaceutical, oil and gas, building automation, industrial robotics, security, 

manufacturing and process control. 

MASAI supports the binary protocol, i.e. opc.tcp://Server, which offers the best 

performance/least overhead, takes minimum resources (no XML Parser, SOAP and 

HTTP required, which is important for embedded devices), offers best interoperability 

(binary is explicitly specified and allows fewer degrees of freedom during 

implementation) and uses a single arbitrarily choosable TCP port for communication 

easing tunneling or easy enablement through a firewall. 

MASAIs’ OPC UA client is based on the FIWARE OPC UA Agent. This client interface is 

capable to get data made available from the OPC UA server, responsible for fetching 

sensor data from factory-level machinery. Before the client can receive sensor data 

values, sensors are mapped to the OPC UA Server Address Space as variables (or 

attributes). Additionally, it is also possible to control the machinery invoking methods 

exposed by the server. 

Sensor values access is provided through a subscription mechanism. For each sensor 

value the OPC UA client wants to have access to, it creates a subscription specifying 

some parameters. Using these parameters, the client asks the server to send data 

according to some particular modalities. At that point the server determines if the 

requests can be fulfilled, otherwise it will continue sending data in a best effort mode 

[14]. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 41 of 60 

 

6. Abstract API specification 
The diversity of the several communication solutions adopted by the Qu4lity partners, 

who contributed to the questionnaire-based overview, suggests some fundamental 

criteria, to be considered as a rationale for the adoption of an Open API strategy. 

The subject of the present section is about the adoption of a set of well-known 

standards, which could support the interoperability of the endpoints in a complex 

communication network, still respecting the design choices that brought to their 

specific implementation solutions. 

Three aspects of interoperability are discussed hereafter. 

First, and more important, the semantics of the exchanged information must be 

defined to the maximum possible extent. Some of the several semantic aspects could 

be easily agreed, because of the availability of some underlying common knowledge. 

A possible example could be: the unit-of-measure of an exchanged value. If this could 

be agreed in advance, it should be properly documented and included in the 

“contract” between the parties. If it cannot be defined, it should be included in the 

foreseen messages as an auxiliary information, which in turn needs to be semantically 

well defined, for instance against a list of possible values either derived from standard 

or agreed locally between partner. And, again, documented and reciprocally agreed. 

Such a level of cooperation necessarily involve the developer teams, as is hard to be 

automated in any way. In other and more challenging cases, the actual meaning of 

the exchanged data could not even be represented in the message itself, as it require 

a deep and reciprocal understanding of the collaborating subsystems. Even more so, 

the effort to document it at the best detail is a design duty. 

Second, the language to be adopted in order to make the exchanged message 

reciprocally understandable must be well defined in advance. This brings to the 

selection of some specific syntax, which should be common to all or most of the 

endpoints in order to reduce the effort of interpreting them. However, several 

techniques exists to support the automated translation between different syntaxes, 

based on the assumption that the underlying logic is similar. As an example, 

conversions between XML and JSON syntax could be easily automated, even if some 

variety of resulting dialects needs to be constrained and controlled during the 

process. Another common method, on the other side, is to dynamically instruct an 

endpoint to produce a message selecting the requested syntax. This is a common 

practice, for instance, in REST based services, where a simple additional parameter 

could instruct the server application to select a specific syntax for the response (e.g. 

&fmt=xml or &fmt=json, &fmt=html, etc.) 

Last, but obviously relevant, the variety of adopted communication protocol should 

be taken in account. However, the convergence toward IP based protocols, which 

could support interoperability at various level of the automation stack, from field to 

cloud, is  nowadays a reality so no longer a matter of opinion. Nevertheless, several 

higher level protocols have been mentioned in the QU4LITY overview, which should 

be considered.  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 42 of 60 

 

It is worth to notice that one of the main qualifying aspects that lead to the adoption 

of a certain protocol, depends on the choice between synchronous or asynchronous 

communication. Demanding interoperability between these distinct dialogue 

approaches is not always possible, as the underlying design decisions still pertain to 

the semantic layer of the information exchange or, event worst, they depend on the 

behavior of the collaborating subsystems along the flowing of time. 

The availability of abstract languages oriented to the formal description of the various 

aspects of an API is therefore a critical building block in the process of support its 

interoperability. The present section concentrates on describing two candidates for 

such a role, which have been previously mentioned in the general discussion and 

which will be discussed here in better details. 

The OpenAPI [2] specification (OAS) defines a standard, language agnostic, interface 

specification for service-oriented APIs, which allows both humans and computers to 

discover and to understand the capabilities of a service without requiring access to 

source code, additional documentation, or inspection of network traffic. By defining 

an API by means of the OAS, a consumer can understand and interact with the remote 

service with a minimal amount of implementation logic. 

AsyncAPI [1] is an open source initiative that seeks to improve the current state of 

Event-Driven Architectures (EDA), whose long-term goal is to reach a compatible 

representation of EDAs and REST APIs, aimed to support the automated management 

of protocol specifications. 

AsyncAPI derives from the OpenAPI specification, aiming at extending its 

synchronous REST based orientation to the world of asynchronous protocols. 

Compatibility and interoperability between the two specifications is by design. 

The OpenAPI Initiative (OAI) is an open governance structure under the Linux 

Foundation. It is focused on creating, evolving and promoting a vendor neutral 

description format.  

Since 2021, the AsyncAPI initiative is also hosted by the Linux Foundation, a condition 

that paves the way to a continuous convergence, also ensuring the interest for 

sponsors and business implementations.  

Both the initiatives are supported by important actors in the business and 

technological world, a condition that ensure continuous development and general 

acceptance. Moreover, the actual adoption in business application is more and more 

growing, so bringing experience from the real word and consolidating their inclusion 

in mission critical DevOps and workflows. 

While OpenAPI and AsyncAPI are growing in parallel, easing their interoperability 

keeps being a primary design goal. 

Goals for both the environments span from automatic documentation to code 

generation, from discovery to event management.  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 43 of 60 

 

OpenAPI or AsyncAPI definitions can be used by documentation generation tools to 

display the API, code generation tools to generate servers and clients in various 

programming languages, testing tools, and many other use cases. 

They helps in the automation of high quality documentation and ready to reuse code 

generation. Other applications are API management, testing, and monitoring. They 

support the entire development cycle of service-oriented or event-driven architecture 

by providing a language for describing the interfaces of the systems, regardless of 

the underlying technology.  

Possible side-product of such a unification effort could be:  

• the automated production of eloquent documentation of the protocols 

• the automated generation of scaffolding code 

• automated control of syntactical and protocol related constraints 

• automated generation of validation code 

• etc. 

 

While OpenAPI is expressly designed to support service-oriented architecture, the 

AsyncAPI Specification aims to describe and document message-driven APIs. It is 

protocol-agnostic, so you can use it for APIs that work over any protocol (e.g., AMQP, 

MQTT, WebSockets, Kafka, STOMP, HTTP, Mercure, etc.). However, it does not 

assume any kind of software topology or architecture: messages could be exchanged 

through a message broker, a web server or any other kind of computer program 

capable of sending and/or receiving data.  

In order to manage protocol specific requirements, a language construct called 

"bindings" helps in detailing information about each of them. 

Besides helping the process of defining and automating the technological and 

message exchange aspects of the communication between endpoints, the adoption 

of a meta-language could prove to be a powerful tool to help in the definition of a 

common ontology of concepts and related attributes among the project's participants. 

The AsyncAPI and OpenAPI languages define some prime-class concepts, which are 

shortly described hereafter, for further discussion. 

An AsyncAPI message broker is a piece of infrastructure that receives messages and 

distributes them to software components who have expressed an interest in receiving 

them. The broker frequently retains messages until they are delivered, making them 

highly resistant to failure. RabbitMQ, Apache Kafka, and Mosquitto are some 

examples of brokers. An OpenAPI server is the piece of infrastructure where the API 

services are provided. It is also protocol agnostic, as it supports HTTP, CoAP, etc 

A publisher (also known as producer) is a program that delivers messages to the 

broker. A subscriber (also known as consumer) is an application that connects to 

the broker, expresses an interest in a specific sort of communication, then leaves the 

connection open, so that the broker can send them the proper messages. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 44 of 60 

 

Channels represent the means through which the endpoints communicates. Because 

the industry lacks a standard term, they are referred with several names by different 

protocols: topics, routing keys, event types and so on. The paths are the OpenAPI 

endpoints which identify all the operations provided by a server. They have a 

hierarchical structure and could be defined in terms of their REST specific request 

and response. 

A message is a piece of information that the publishers send to the broker and that 

all interested subscribers receive. The message's content can be anything, and 

they're typically classified as events, orders, commands or the like. 

The message payload is where the actual information is packaged, to be exchanged 

between the communicating endpoints. Here is where most of the syntax and the 

semantic aspects of the messages are defined and require to be documented. 

Neither OpenAPI nor AsyncAPI impose constraint for the syntax to be adopted for the 

actual messages. Their structure and all the information that could be useful to 

document their semantics are collected in so called schemas. 

A detailed specification of the AsyncAPI syntax is beyond the scope of this 

deliverable: the details about the language are freely available on the AsyncAPI 

official website. However, some examples of their usage is included in the present 

document, in a subsequent section. 

An AsyncAPI document is human-friendly and also machine-readable. Even in its 

native, raw form, it represent a useful and effective design and documentation tool. 

The file format must be JSON or YAML. Being composed by a simple text file, an 

AsyncAPI specification does not require any special IDE to support its development. 

As it is easily parse-able, several useful applications could be developed over them 

with a minimal effort. Indeed, a very active community is constantly generating new 

tools, which offer services like  

• generation of documentation and code;  

• validation of the messages received by an application; 

• application of management policies to messages; 

• development of bridges between endpoints, to support different protocols 

Beside the elements that structurally define the asynchronous or synchronous 

applications, additional details could be included in the specification file. Examples 

are: 

• security mechanisms 

• parameters and parameter substitution 

• protocol dependent details 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 45 of 60 

 

7. Tools to enable interoperability 
 

Many companies have their own proprietary platforms and IoT gateways. They 

communicate using standard data formats such as JSON or XML, but there is not 

always common agreement on the structure or the semantics of data shared. As 

presented in section 6, the APIs adopted in QU4LITY rely on different technologies, 

protocols and architectures. Thus, we can find an API that uses the RESTful 

architecture to offer data and another that publishes messages using an MQTT 

broker. 

Version 1 of the present document described a possible approach to support 

interoperability between digital platforms, based on the exploitation of APIs that 

provide data and operations flow between systems, generally distributed and 

interacting via a communication network. These kind of APIs aim to specify the 

mechanisms that tools need to implement for exchange of data and 

coordination/synchronization of operations.  

A possible approach to face the difficulties just highlighted, enabling the 

interoperability between different APIs, could be to build translator according to the 

requirements and specifications set by each of the QU4LITY cooperating systems.  

Such a development path was followed by task T3.5 and described in the 

corresponding deliverables, so the discussion about such a methodology will not be 

repeated in this document. 

Nevertheless, the adoption of translators between endpoints imposes to the parties 

the responsibility to clearly and unambiguously describe the constituent aspects of 

the translation, which is based on the reciprocal expectations by the involved 

subsystems. In other words, the semantic, syntactical and technological facets of the 

communication need to be documented and shared, in order to appropriately 

configure the middleware tool with the correct information. 

This requirement, again, do force the teams to collaborate on the basis of a common 

language, which could simplify and therefore enable the translation specification. The 

adoption of such a common set of languages is the core of the proposal resulting 

from the analysis carried out in this task.  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 46 of 60 

 

8. Proof of Concept implementation 
 

In order to demonstrate the effectiveness of the suggested approach, the QU4LITY 

“PRIMA” pilot was selected as a workbench for experimentation, with the aim of 

supplying a proof-of-concept of the applied methodology.  

The PRIMA pilot builds around one of their additive machine tool products, a Power 

Bed Fusion (PBF) system. The main goal of the pilot is to enhance the machine with 

advanced monitoring capabilities and other features that enable to increase the 

quality of the production. The main goal of the tool is to process a set of KPIs that 

are representative of the process quality and that can support the operator in the 

identification of roots for possible problems in the quality of the manufactured parts. 

The overall system will be developed by different partner, each developing its own 

specialized subsystem, all of them interconnected by a dense exchange of messages:  

• The PRIMA additive machine, integrated in the overall system; 

• A vision system and a real time image processing system, developed by FHG 

ILT, monitoring the quality of the layers while printing is in progress. 

• A 3D visualization tool, developed by FHG IGD, offering a detailed vision of 

the manufactured part to an operator, so enabling the investigation of possible 

defects recognized by the vision system. 

• A simulation tool, developed by TTS, simulating the manufacturing process 

before the actual run on the machine.  

• A Decision Support System (DSS), developed by partner Atlantis, providing 

relevant indications aimed at guaranteeing the expected production quality. 

• A Data analytics tool for Additive Manufacturing, developed by SYN, to 

harmonize the information provided by the companion tools, adding metrics 

to help the Decision support process. 

• An augmented reality (AR) system, developed by VTT, integrated to the 

machine tool to support the operator during maintenance tasks. 

The richness of the development team, both in terms of number of participants than 

diversity of the reciprocal roles, along with the inherent need to create a network of 

exchanged information, make this pilot an ideal workbench to share a common Open 

API. 

Moreover, the development team lacked a common Open API at the beginning of the 

project, as all of them are independent parties, each adopting its internal DevOps 

methodologies. This condition also offers the opportunity to adopt the proposed 

QU4LITY ZDM data standard, in those cases where an Open APIs was not already 

provided or it could be adapted with a minimal effort. 

While the development of this pilot is still ongoing during the writing of this 

documents, it is possible nevertheless to document the work-in-progress regarding 

the definition of the message exchange mechanism, which is the argument of the 

present discussion. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 47 of 60 

 

Semantics and syntax 

The following diagram depict the expected communication between modules, at the 

initial stage of the analysis. 

 

Figure 17: PRIMA pilot actors and connections 

The communication needs, as depicted by the previous diagram, would suggest a 

client-server architecture, where several tools could communicate their actions to a 

master node, responsible in turn for exposing the collected information to external 

entities. A REST oriented architecture could therefore be selected as a first solution.  

The adoption of the Open API specification, therefore, could appear as a good choice 

for the description of the expected communication scenario. 

Even at such a preliminary stage of development, the need to define the basic aspects 

of the exchanged messages arises, as they are essential to define the reciprocal roles 

of each subsystem. These aspects could be, and should be, independent from the 

selected communication protocol. They refer indeed to the semantics of the 

exchanged information, first of all.  

Then, they could refer to a common syntax, to be agreed with the aim to simplify the 

reciprocal effort for interpreting the messages.  

It is worth to note that syntactical decisions could tolerate some degree of freedom. 

Several formal languages, indeed, allow automatic translations, which could be 

supplied by intermediate proxies, like we discussed in the previous sections. On the 

contrary, the semantic aspects must be defined and agreed to the minimal possible 

ambiguity. 

To this aim, the schema of each of the exchanged messages has been defined 

adopting the “JSON schema” formalism. Such a standard is included as an integral 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 48 of 60 

 

element of both the OpenAPI and AsyncAPI specification, despite their different 

orientation toward synchronous or asynchronous nature of the communication. 

Some excerpt of the common schema defined by the PRIMA pilot team is reported 

hereafter. Despite the name ‘JSON schema’, the language adopted here is YAML, 

which is an extremely terse formalism, mostly interoperable with JSON, offering 

several advantages in terms of readability and write ability. 

components: 

  schemas: 

    primaDatasetParameters: 

      type: object 

      properties: 

        DatasetParameters: 

          type: object 

          description: "just a wrapper" 

          properties: 

            BuildJob: 

              type: string 

              description: "unique 3D printing job id" 

            TotalNumberOfLayers: 

              type: integer 

              minimum: 1 

              description: "Total Number Of Layers" 

            EvaluationTags: 

              type: array 

              description: | 

                The list of evaluation tags is set by the dataset initialization message  

                with the requirement to be sorted with ‘good’ to bad’ interpretation. 

              items: 

                type: string 

    layerEvaluation: 

      type: object 

      properties: 

        InspectionedData: 

          type: object 

          properties: 

            Id: 

              type: integer 

              minimum: 1 

              description: | 

                index (starting from 1) of the current feedback message,  

                i.e. a enumeration of all feedback messages until now" 

            BuildJobId: 

              type: string 

              description: "unique identifier string of the current building job" 

            Timestamp: 

              type: string 

              format: date-time 

              description: "time stamp when the current data layer was created" 

 

[… omissis …]  

                 

    logEntryLayerwiseInfo: 

      type: object 

      properties: 

        "LogEntry_layer-wise_info": 

          type: object 

          description: "just a wrapper" 

          properties: 

            Id: 

              type: integer 

              minimum: 1 

              description: "id of this layer, relative to its job" 

            BuildJob: 

              type: string 

              description: "unique 3D printing job id" 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 49 of 60 

 

            Timestamp: 

              type: string 

              format: date-time 

            Event: 

              type: object 

              properties: 

        ProcessParameter: 

          type: object 

          description: "just a wrapper" 

          properties: 

            LaserPower: 

              type: integer 

[… omissis …] 

 

Again, it is important to note that the languages YAML/JSON has been selected as a 

lingua franca for the editing of the schemas, but they do not constraint the target 

language to be adopted for the actual messages (their ‘payload’). The target 

language could be, just to mention typical examples: XML, HCL, CSV, JSON, YAML, 

TOML, CSON, plain text, base64 binary, etc. 

Each of the message schemas could be stored as individual files, in order to be reused 

by different endpoint of the communication. The presented example combines some 

common schema in a single file.  

Synchronous vs Asynchronous communication 

During the subsequent stages of the development it became apparent that the 

exchange of message would be more articulated, involving not only a central node 

(“SYN” in this diagram) receiving most of the information, but also a direct 

communication between nodes, in order to coordinate their actions. 

The following UML communication diagram depicts such a scenario. 

 

Figure 18: PRIMA pilot - raw communication diagram 

Such a scenario configures the need of multicast communication, which undermines 

the appropriateness of the client-server architecture assumed so far. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 50 of 60 

 

Moreover, most of the exchanged message reveal themselves as asynchronous 

messages, also presenting a diversity of cause-effect. Some message from an 

endpoint, indeed, prelude to a sequence of messages from another endpoint (e.g. 

after an “init”, several “layerwise” messages will follow). Other messages are just 

‘send and forget’, with no need for a feedback (e.g. ‘simulation’). 

Such a renewed scenario configure a better approach, based on a broker based 

architecture. A central broker will appropriately support both the mentioned cases. 

Each of the cooperating subsystems will “publish” messages of interest for other 

parties and/or it will “subscribe” for the reception of specific messages of its 

interested in. 

The following UML communication diagram describes the updated network. 

 

Figure 19: PRIMA pilot - broker-based collaboration 

After such a modification to the architecture, the AsyncAPI specification appears to 

be more appropriate for the description of the interaction between subsystems. It 

allows, indeed, to define several details about the constituent components of the 

network. 

However, the schema specification already detailed and shared by the 

development team remains unchanged and still valid. 

On the contrary, the choice of a broker-based architecture outlines a possible choice 

between several alternative protocols. The AsyncAPI specification does not constraint 

such a choice, as its formalism has been abstracted precisely to allow such a freedom, 

still providing all the necessary details to specify the details of the selected 

implementation. 

Based on the specific requirements of this pilot, MQTT was select as the more 

appropriate.  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 51 of 60 

 

Application description 

The following short excerpt of AsyncAPI specification defines the characteristics of 

one of the cooperating application. In this case it is the PRIMA machine controller. 

This specific case is very simple, as it is composed by a single channel (‘topic’ in the 

MQTT jargon) that uniquely identify the flow of messages sent by this subsystem, 

which are destined to all the subscribers. 

asyncapi: 2.2.0 

info: 

  title: PRIMA 3D printing machine 

  version: '1.0.0' 

 

servers: 

  demonstration: 

    url: q4prima.qu4lity-project.eu 

    protocol: mqtt 

    description: Test & demonstration MQTT broker 

    bindings: 

      mqtt: 

        clientId: "YEP" 

        qos: 0 

        retain: true 

 

channels: 

  FraunhoferIGD_Visualizer/initialization: 

    publish: 

      operationId: primaDatasetParameters 

      message: 

        $ref : '#/components/messages/PrimaDatasetParameters' 

        description: | 

          Currently, the list of evaluation tags is set by the dataset initialization message with 

the requirement to be sorted from some kind of â€˜goodâ€™ to â€˜badâ€™ interpretation. 

 

components: 

  messages: 

    PrimaDatasetParameters: 

      name: primaDatasetParameters 

      title: Dataset Parameters from PRIMA printing machine 

      summary: Inform about a new job started on the 3D printing machine 

      contentType: application/json 

      payload: 

        $ref: './#/components/schemas/primaDatasetParameters' 

Figure 20: PRIMA pilot - AsyncAPI application definition 

Notices as the JSON schema describing the message payload is a reference is to an 

external file, shared with the other application which will receive such a message. 

The following UML Sequence diagram better illustrates the interaction between those 

applications. While it is equivalent to the previous communication diagram, it 

highlights the need to share the same payload schema between several of them. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 52 of 60 

 

 

Figure 21: PRIMA pilot sequence diagram 

Each AsyncAPI file describes a single application, so the present pilot will count six 

different descriptors. As all of them are very similar, they will not be included here. 

Asynch and Synch coexistence 

The strict closeness which binds AsyncAPI and OpenAPI comes in handy in case we 

need to compose asynchronous and synchronous services in the same network. In 

such a case, the description of both services will be mostly reusable and 

homogeneous, so reducing the development effort. 

This could be the case, indeed, in the PRIMA pilot, where the role of the SYN node is 

twofold: on the one hand, it is a subscriber of most of the messages exchanged in 

the system, to be enriched and published to the ATL endpoint; on the other hand, it 

could implement local repository with a few management and visualization feature. 

On this respect, the “SYN srv” depicted in next diagram could be an HTTP server, 

willing to expose REST services, which could supply information on demand. 

 

Figure 22: additional REST service 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 53 of 60 

 

In such a configuration the JSON schema of the message payload would be fully 

reused and the application description would only describe its REST specific 

peculiarity. 

openapi: "3.0.0" 

info: 

  version: 1.0.0 

  title: PRIMA SYN server 

  license: 

    name: public 

servers: 

  - url: http://q4prima.synesis-consortium.eu 

paths: 

  /jobs: 

    get: 

      summary: List all PRiMA 3dprint jobs 

      operationId: listJobs 

      tags: 

        - jobs 

      parameters: 

        - name: limit 

          in: query 

          description: How many items to return at one time (max 100) 

          required: false 

          schema: 

            type: integer 

            format: int32 

      responses: 

        '200': 

          description: A paged array of jobs 

[… omissis …] 

  /jobs/{jobId}: 

    get: 

      summary: Info for a specific job 

      operationId: showJobById 

      tags: 

        - jobs 

      parameters: 

        - name: jobId 

          in: path 

          required: true 

          description: The id of the job to retrieve 

          schema: 

            type: string 

[… omissis …]  

components: 

  $ref: "./#/components/schemas/Job" 

 

Notice as the final ./#/components/schemas/Job would refer to the same JSON 

schema compiled for the AsyncAPI definition, so ensuring its full re-use. 

As mentioned in the general presentation of the AsyncAPI and OpenAPI standards, 

several code generators are available, especially oriented to the creation of 

scaffolding applications, ready to be enriched with specific functionalities. These could 

support both the initial phase of development and the refactoring of existing code, in 

order to make them compatible with additional network connections.  

In the context of the PRIMA pilot content, this opportunity has been adopted by some 

of the involved partners, while others found more convenient to enhance their 

existing solution with the agreed functionalities, which are described by the common 

specifications. 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 54 of 60 

 

Finally, several tools are available to generate automatic and high quality 

documentation. Uniform and automated documentation is a powerful enabler to the 

development of interoperable code, as it supports a common and reciprocal 

understanding of the problem space and the interaction contracts established 

between cooperating endpoints of a complex system. 

The following is an example of an interactive HTML page, offering an easy to navigate 

description of a complete (and potentially complex) application, automatically 

generated. Several alternative tools are available, while the developers’ community 

relentlessly develop new solutions and enhancements to the standards. 

 

Figure 23: AsyncAPI automated documentation (1) 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 55 of 60 

 

 

Figure 24: AsyncAPI automated documentation (2) 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 56 of 60 

 

9. Conclusions 
Task 5.4 is expected to provide the basis for data interoperability between digital 

platforms, enabling the implementation of the AQ paradigm in ZDM processes. To 

achieve that objective, Task 5.4 proposed a set of Open APIs specifications to be 

adopted in QU4LITY. 

The interoperability between the QU4LITY technologies could will be supported by 

the enhancement of those digital platforms that suffer some incompatibility of APIs, 

so that they can interface effectively with other tools by means of Open APIs. 

In general terms, the goal is to enable the use of the digital platforms from the project 

partners in various ZDM processes. At the same time, the Open APIs identified in 

Task 5.4 should also make more accessible and effective the enhancement of those 

technologies by third parties. That possibility will make the AQ paradigm proposed 

by QU4LITY largely applicable and adaptive to a wider set of concrete ZDM processes. 

Overall Task 5.4 will work on providing the means for composing the different digital 

platforms addressed in the project and their capabilities in holistic ZDM solutions for 

AQ. 

This document introduced the key concepts that are instrumental for the 

identification of the Open APIs that QU4LITY should leverage and promote for 

implementing the AQ paradigm in ZDM processes. 

Many aspects can characterize an API and therefore it is important to understand and 

evaluate the elements that should support on the identification and then selection of 

those interfaces the QU4LITY will promote as Open APIs for the implementation of 

ZDM processes. 

An overview of the APIs supported by some of the QU4LITY partners’ technologies 

has been presented, detailing their characteristics and highlighting protocols and data 

formalism adopted.  

A set of Abstract API specification has been presented, namely AsyncAPI and 

OpenAPI, which have the potential to cover most of the interoperability requirements 

described by the QU4LITY partners. 

A specific use-case has been selected among the QU4LITY pilots, as a proof-of-

concept of the enforceability and the effectiveness of the proposed Open API solution 

for ZDM processes. 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 57 of 60 

 

10. References 
 

[1]  "AsyncAPI Specification," [Online]. Available: 

https://www.asyncapi.com/docs/specifications/v2.2.0.. 

[2]  OPENAPI initiative, "The OpenAPI Specification," [Online]. Available: 

https://www.openapis.org/. 

[3]  T. Vijayakumar, Practical API Architecture and Development with Azire and AWS, Apress, 

2018.  

[4]  A. D. Birrell and B. J. Nelson, "Implementing Remote Procedure Calls," ACM Transactions 

on Computer Systems, vol. 2, no. 1, 1984.  

[5]  T. L. Foundation, "gRPC," [Online]. Available: https://grpc.io/docs/. 

[6]  "Chapter 1: Service Oriented Architecture (SOA)," msdn.microsoft.com, [Online]. 

Available: 

https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-

us/library/bb833022.aspx. 

[7]  "MQTT.ORG," [Online]. Available: http://mqtt.org/. 

[8]  "AMQP.ORG," [Online]. Available: https://www.amqp.org/. 

[9]  OPC Foundation, "OPC Unified Architecture Specification," [Online]. Available: 

https://opcfoundation.org/developer-tools/specifications-unified-architecture. 

[10]  OPC Foundation, "OPC Unified Architecture Information Models," [Online]. Available: 

https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models. 

[11]  W3C, "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," [Online]. 

Available: https://www.w3.org/TR/soap12/. 

[12]  Object Management Group, "Interface Definition Language," [Online]. Available: 

https://www.omg.org/spec/IDL. 

[13]  "FIWARE Device," [Online]. Available: https://fiware-

datamodels.readthedocs.io/en/latest/Device/Device/doc/spec/index.html. 

[14]  "OPC UA Agent," [Online]. Available: https://iotagent-

opcua.readthedocs.io/en/latest/opc_ua_agent_tutorial/index.html. 

[15]  OpenJS Foundation, "Node-RED," [Online]. Available: Web Services Oxygenated 2. 

 

 



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 58 of 60 

 

List of figures 
Figure 1 Possible approach for integration of Engineering Environments ............... 5 

Figure 2 QU4LITY Reference Architecture .......................................................... 7 

Figure 3 Unimetrik M3mh Communication ........................................................ 15 

Figure 4 Communication between MQTT Broker and Client ................................. 16 

Figure 5Communication schema based on M2CAPI ............................................ 18 

Figure 6 M2CAPI REST Topology ..................................................................... 18 

Figure 7 Conceptual Context Awareness Architecture ........................................ 21 

Figure 8 Conceptual Context Monitoring Architecture ........................................ 22 

Figure 9 Conceptual Situation Determination Architecture .................................. 22 

Figure 10 Usage of generic DLL FB in an application .......................................... 27 

Figure 11 Communication between IEC61499 and simulation environment .......... 28 

Figure 12 ATLAS Component Diagram and Architecture ..................................... 31 

Figure 25 Monitoring Architecture exploiting the MQTT API ................................ 35 

Figure 13 Communication schema based on MQTT API ...................................... 36 

Figure 14 Communication schema based on REST API ....................................... 38 

Figure 15 Communication schema based on OPC UA API ................................... 39 

Figure 17: PRIMA pilot actors and connections ................................................. 47 

Figure 18: PRIMA pilot - raw communication diagram ....................................... 49 

Figure 19: PRIMA pilot - broker-based collaboration .......................................... 50 

Figure 20: PRIMA pilot - AsyncAPI application definition .................................... 51 

Figure 21: PRIMA pilot sequence diagram ........................................................ 52 

Figure 22: additional REST service .................................................................. 52 

Figure 23: AsyncAPI automated documentation (1) .......................................... 54 

Figure 24: AsyncAPI automated documentation (2) .......................................... 55 

  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 59 of 60 

 

List of Abbreviations 

Abbreviation Explanation 

AI Artificial Intelligence 

AMQP Advanced Message Queuing Protocol 

API Application Programming Interface 

AQ Autonomous Quality 

AR Augmented Reality 

CAT Composite automation topology 

CPPS Cyber Physical Production System 

CPS Cyber Physical System 

CRUD Create, Read, Update and Delete 

D2.5 D2.5 Catalogue of ZDM Assets (Version 1) 

D2.11 D2.11 Reference Architecture and Blueprints (Version 1) 

D4.3 D4.3 Distributed Communication and Control Infrastructure 

DSS Decision Support System 

ESB Enterprise Service Bus 

IDE integrated development environment 

IDL Interface Definition Language 

IT Internet Technology 

KPI Key Performance Indicator 

MQTT Message Queuing Telemetry Transport 

MR Mixed Reality 

OAS OpenAPI Specification 

OOP Object Oriented Programming 

OPC UA Open Platform Communication Unified Architecture 

OT Operation Technology 

RA Reference Architecture 

REST Representational state transfer 

RPC Remote Procedure Call 

SOA Service-Oriented Architecture 

SOAP Simple Object Access Protocol 

WSDL Web Services Description Language 

ZDM Zero Defect Manufacturing 

 

  



 Project QU4LITY - Digital Reality in Zero Defect Manufacturing 

Title QU4LITY Digital Platforms Open APIs 
(Final Version) 

Date 30/09/2021 

Del. Code D5.8 Diss. Level PU 

 

  

QU4LITY-project.eu Copyright © QU4LITY Project Consortium 60 of 60 

 

Partners: 
   

   

 

 

 

 
  

   

 
 

 

  
 

  

 

 
  

 
 

 

 

 

 

 

 

 

 

  
  

 

 
 

       

 

 

   

         

  

 


